| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfisg.1 | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) ) | 
						
							| 2 |  | wefr | ⊢ ( 𝑅  We  𝐴  →  𝑅  Fr  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Fr  𝐴 ) | 
						
							| 4 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 5 |  | sopo | ⊢ ( 𝑅  Or  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑅  We  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Po  𝐴 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Se  𝐴 ) | 
						
							| 9 | 1 | adantl | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) ) | 
						
							| 10 | 9 | frpoinsg | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑦  ∈  𝐴 𝜑 ) | 
						
							| 11 | 3 7 8 10 | syl3anc | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑦  ∈  𝐴 𝜑 ) |