Metamath Proof Explorer


Theorem wfr2a

Description: A weak version of wfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020)

Ref Expression
Hypotheses wfr2a.1 𝑅 We 𝐴
wfr2a.2 𝑅 Se 𝐴
wfr2a.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfr2a ( 𝑋 ∈ dom 𝐹 → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 wfr2a.1 𝑅 We 𝐴
2 wfr2a.2 𝑅 Se 𝐴
3 wfr2a.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
4 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
5 predeq3 ( 𝑥 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑥 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
6 5 reseq2d ( 𝑥 = 𝑋 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
7 6 fveq2d ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )
8 4 7 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ↔ ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) )
9 1 2 3 wfrlem12 ( 𝑥 ∈ dom 𝐹 → ( 𝐹𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) )
10 8 9 vtoclga ( 𝑋 ∈ dom 𝐹 → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )