| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wfr2aOLD.1 | 
							⊢ 𝑅  We  𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							wfr2aOLD.2 | 
							⊢ 𝑅  Se  𝐴  | 
						
						
							| 3 | 
							
								
							 | 
							wfr2aOLD.3 | 
							⊢ 𝐹  =  wrecs ( 𝑅 ,  𝐴 ,  𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑋 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							predeq3 | 
							⊢ ( 𝑥  =  𝑋  →  Pred ( 𝑅 ,  𝐴 ,  𝑥 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							reseq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑥 ) )  =  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ) )  =  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ) )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) ) )  | 
						
						
							| 9 | 
							
								1 2 3
							 | 
							wfrlem12OLD | 
							⊢ ( 𝑥  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑥 ) ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							vtoclga | 
							⊢ ( 𝑋  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) )  |