Metamath Proof Explorer


Theorem wfr3

Description: The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that F is unique. We do this by showing that any function H with the same properties we proved of F in wfr1 and wfr2 is identical to F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis wfr3.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfr3 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 )

Proof

Step Hyp Ref Expression
1 wfr3.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
2 simpl ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝑅 We 𝐴𝑅 Se 𝐴 ) )
3 1 wfr1 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 )
4 1 wfr2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
5 4 ralrimiva ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
6 3 5 jca ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
7 6 adantr ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
8 simpr ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
9 wfr3g ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 )
10 2 7 8 9 syl3anc ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 )