Metamath Proof Explorer


Theorem wfr3g

Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion wfr3g ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
2 fveq2 ( 𝑧 = 𝑤 → ( 𝐹𝑧 ) = ( 𝐹𝑤 ) )
3 fveq2 ( 𝑧 = 𝑤 → ( 𝐺𝑧 ) = ( 𝐺𝑤 ) )
4 2 3 eqeq12d ( 𝑧 = 𝑤 → ( ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ↔ ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
5 4 imbi2d ( 𝑧 = 𝑤 → ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) ) )
6 ra4v ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
7 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
8 predeq3 ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) )
9 8 reseq2d ( 𝑦 = 𝑧 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
10 9 fveq2d ( 𝑦 = 𝑧 → ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
11 7 10 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
12 fveq2 ( 𝑦 = 𝑧 → ( 𝐺𝑦 ) = ( 𝐺𝑧 ) )
13 8 reseq2d ( 𝑦 = 𝑧 → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
14 13 fveq2d ( 𝑦 = 𝑧 → ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
15 12 14 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
16 11 15 anbi12d ( 𝑦 = 𝑧 → ( ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) )
17 16 rspcva ( ( 𝑧𝐴 ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
18 eqtr3 ( ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
19 18 ancoms ( ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
20 eqtr3 ( ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) )
21 20 ex ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
22 19 21 syl ( ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
23 22 expimpd ( ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) → ( ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
24 predss Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴
25 fvreseq ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
26 24 25 mpan2 ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) )
27 26 biimpar ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
28 27 eqcomd ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
29 28 fveq2d ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
30 23 29 syl11 ( ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
31 30 expd ( ( ( 𝐹𝑧 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∧ ( 𝐺𝑧 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
32 17 31 syl ( ( 𝑧𝐴 ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
33 32 ex ( 𝑧𝐴 → ( ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) ) )
34 33 impcomd ( 𝑧𝐴 → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
35 34 a2d ( 𝑧𝐴 → ( ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
36 6 35 syl5 ( 𝑧𝐴 → ( ∀ 𝑤 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑤 ) = ( 𝐺𝑤 ) ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
37 5 36 wfis2g ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
38 r19.21v ( ∀ 𝑧𝐴 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ↔ ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
39 37 38 sylib ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
40 39 com12 ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ∀ 𝑦𝐴 ( ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
41 1 40 sylan2br ( ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) ∧ ( ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
42 41 an4s ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
43 42 com12 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
44 43 3impib ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) )
45 eqid 𝐴 = 𝐴
46 44 45 jctil ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) )
47 eqfnfv2 ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
48 47 ad2ant2r ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
49 48 3adant1 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺𝑧 ) ) ) )
50 46 49 mpbird ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐻 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ∧ ( 𝐺 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐺𝑦 ) = ( 𝐻 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → 𝐹 = 𝐺 )