| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem10OLD.1 |
⊢ 𝑅 We 𝐴 |
| 2 |
|
wfrlem10OLD.2 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 3 |
2
|
wfrlem8OLD |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 4 |
3
|
biimpi |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) = Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 5 |
|
predss |
⊢ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹 |
| 6 |
5
|
a1i |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹 ) |
| 7 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 ∈ dom 𝐹 ) |
| 8 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 9 |
|
eleq1w |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ dom 𝐹 ↔ 𝑧 ∈ dom 𝐹 ) ) |
| 10 |
9
|
notbid |
⊢ ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹 ) ) |
| 11 |
8 10
|
syl5ibrcom |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹 ) ) |
| 12 |
11
|
con2d |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧 ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑤 = 𝑧 ) |
| 14 |
|
ssel |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) → 𝑧 ∈ dom 𝐹 ) ) |
| 15 |
14
|
con3d |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ( ¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 16 |
8 15
|
syl5com |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 17 |
2
|
wfrdmclOLD |
⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 18 |
16 17
|
impel |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) |
| 19 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) |
| 20 |
|
elpredg |
⊢ ( ( 𝑤 ∈ dom 𝐹 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) ) |
| 22 |
19 21
|
sylan |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑤 ) ↔ 𝑧 𝑅 𝑤 ) ) |
| 23 |
18 22
|
mtbid |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ¬ 𝑧 𝑅 𝑤 ) |
| 24 |
2
|
wfrdmssOLD |
⊢ dom 𝐹 ⊆ 𝐴 |
| 25 |
24
|
sseli |
⊢ ( 𝑤 ∈ dom 𝐹 → 𝑤 ∈ 𝐴 ) |
| 26 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
| 27 |
1 26
|
ax-mp |
⊢ 𝑅 Or 𝐴 |
| 28 |
|
solin |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 29 |
27 28
|
mpan |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 30 |
25 19 29
|
syl2anr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝑤 𝑅 𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧 𝑅 𝑤 ) ) |
| 31 |
13 23 30
|
ecase23d |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 𝑅 𝑧 ) |
| 32 |
|
vex |
⊢ 𝑤 ∈ V |
| 33 |
32
|
elpred |
⊢ ( 𝑧 ∈ V → ( 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( 𝑤 ∈ dom 𝐹 ∧ 𝑤 𝑅 𝑧 ) ) ) |
| 34 |
33
|
elv |
⊢ ( 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( 𝑤 ∈ dom 𝐹 ∧ 𝑤 𝑅 𝑧 ) ) |
| 35 |
7 31 34
|
sylanbrc |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ dom 𝐹 ) → 𝑤 ∈ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 36 |
6 35
|
eqelssd |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Pred ( 𝑅 , dom 𝐹 , 𝑧 ) = dom 𝐹 ) |
| 37 |
4 36
|
sylan9eqr |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) = dom 𝐹 ) |