Step |
Hyp |
Ref |
Expression |
1 |
|
wfrfun.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfrfun.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfrfun.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
4
|
eldm2 |
⊢ ( 𝑦 ∈ dom 𝐹 ↔ ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ 𝐹 ) |
6 |
|
df-wrecs |
⊢ wrecs ( 𝑅 , 𝐴 , 𝐺 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
7 |
3 6
|
eqtri |
⊢ 𝐹 = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
8 |
7
|
eleq2i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐹 ↔ 〈 𝑦 , 𝑧 〉 ∈ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
9 |
|
eluniab |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ↔ ∃ 𝑓 ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 ∧ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
10 |
8 9
|
bitri |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐹 ↔ ∃ 𝑓 ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 ∧ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
11 |
|
abid |
⊢ ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ↔ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
12 |
|
elssuni |
⊢ ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → 𝑓 ⊆ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
13 |
12 7
|
sseqtrrdi |
⊢ ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → 𝑓 ⊆ 𝐹 ) |
14 |
11 13
|
sylbir |
⊢ ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → 𝑓 ⊆ 𝐹 ) |
15 |
|
fnop |
⊢ ( ( 𝑓 Fn 𝑥 ∧ 〈 𝑦 , 𝑧 〉 ∈ 𝑓 ) → 𝑦 ∈ 𝑥 ) |
16 |
15
|
ex |
⊢ ( 𝑓 Fn 𝑥 → ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 → 𝑦 ∈ 𝑥 ) ) |
17 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑦 ∈ 𝑥 → ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
18 |
17
|
impcom |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
19 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 → ( 𝑦 ∈ 𝑥 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ) |
20 |
|
fndm |
⊢ ( 𝑓 Fn 𝑥 → dom 𝑓 = 𝑥 ) |
21 |
20
|
sseq2d |
⊢ ( 𝑓 Fn 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ) |
22 |
20
|
eleq2d |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ dom 𝑓 ↔ 𝑦 ∈ 𝑥 ) ) |
23 |
21 22
|
anbi12d |
⊢ ( 𝑓 Fn 𝑥 → ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) ) |
24 |
23
|
biimprd |
⊢ ( 𝑓 Fn 𝑥 → ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) ) |
25 |
24
|
expd |
⊢ ( 𝑓 Fn 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 → ( 𝑦 ∈ 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) ) ) |
26 |
25
|
impcom |
⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥 ) → ( 𝑦 ∈ 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) ) |
27 |
1 2 3
|
wfrfun |
⊢ Fun 𝐹 |
28 |
|
funssfv |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ 𝑦 ∈ dom 𝑓 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
29 |
28
|
3adant3l |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
30 |
|
fun2ssres |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
31 |
30
|
3adant3r |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
33 |
29 32
|
eqeq12d |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
34 |
33
|
biimprd |
⊢ ( ( Fun 𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
35 |
27 34
|
mp3an1 |
⊢ ( ( 𝑓 ⊆ 𝐹 ∧ ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
36 |
35
|
expcom |
⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) → ( 𝑓 ⊆ 𝐹 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
37 |
36
|
com23 |
⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
38 |
26 37
|
syl6com |
⊢ ( 𝑦 ∈ 𝑥 → ( ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) |
39 |
38
|
expd |
⊢ ( 𝑦 ∈ 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 → ( 𝑓 Fn 𝑥 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
40 |
39
|
com34 |
⊢ ( 𝑦 ∈ 𝑥 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 Fn 𝑥 → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
41 |
19 40
|
sylcom |
⊢ ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 Fn 𝑥 → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 Fn 𝑥 → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
43 |
42
|
com14 |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
44 |
18 43
|
syl7 |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
45 |
44
|
exp4a |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) ) |
46 |
45
|
pm2.43d |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
47 |
46
|
com34 |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑦 ∈ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
48 |
16 47
|
syldc |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 → ( 𝑓 Fn 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) ) ) |
49 |
48
|
3impd |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
50 |
49
|
exlimdv |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( 𝑓 ⊆ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
51 |
14 50
|
mpdi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
52 |
51
|
imp |
⊢ ( ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 ∧ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
53 |
52
|
exlimiv |
⊢ ( ∃ 𝑓 ( 〈 𝑦 , 𝑧 〉 ∈ 𝑓 ∧ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
54 |
10 53
|
sylbi |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
55 |
54
|
exlimiv |
⊢ ( ∃ 𝑧 〈 𝑦 , 𝑧 〉 ∈ 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
56 |
5 55
|
sylbi |
⊢ ( 𝑦 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |