Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfrlem13.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfrlem13.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
|
wfrlem13.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
5 |
1 2 3
|
wfrfun |
⊢ Fun 𝐹 |
6 |
|
vex |
⊢ 𝑧 ∈ V |
7 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
8 |
6 7
|
funsn |
⊢ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } |
9 |
5 8
|
pm3.2i |
⊢ ( Fun 𝐹 ∧ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
10 |
7
|
dmsnop |
⊢ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } = { 𝑧 } |
11 |
10
|
ineq2i |
⊢ ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∩ { 𝑧 } ) |
12 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
13 |
|
disjsn |
⊢ ( ( dom 𝐹 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹 ) |
14 |
12 13
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( dom 𝐹 ∩ { 𝑧 } ) = ∅ ) |
15 |
11 14
|
eqtrid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ∅ ) |
16 |
|
funun |
⊢ ( ( ( Fun 𝐹 ∧ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ∅ ) → Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
17 |
9 15 16
|
sylancr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
18 |
|
dmun |
⊢ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
19 |
10
|
uneq2i |
⊢ ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) |
20 |
18 19
|
eqtri |
⊢ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) |
21 |
4
|
fneq1i |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
22 |
|
df-fn |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
23 |
21 22
|
bitri |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
24 |
17 20 23
|
sylanblrc |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |