| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem13OLD.1 |
⊢ 𝑅 We 𝐴 |
| 2 |
|
wfrlem13OLD.2 |
⊢ 𝑅 Se 𝐴 |
| 3 |
|
wfrlem13OLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 4 |
|
wfrlem13OLD.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 5 |
1 2 3
|
wfrfunOLD |
⊢ Fun 𝐹 |
| 6 |
|
vex |
⊢ 𝑧 ∈ V |
| 7 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
| 8 |
6 7
|
funsn |
⊢ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } |
| 9 |
5 8
|
pm3.2i |
⊢ ( Fun 𝐹 ∧ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 10 |
7
|
dmsnop |
⊢ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } = { 𝑧 } |
| 11 |
10
|
ineq2i |
⊢ ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∩ { 𝑧 } ) |
| 12 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 13 |
|
disjsn |
⊢ ( ( dom 𝐹 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹 ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( dom 𝐹 ∩ { 𝑧 } ) = ∅ ) |
| 15 |
11 14
|
eqtrid |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ∅ ) |
| 16 |
|
funun |
⊢ ( ( ( Fun 𝐹 ∧ Fun { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ ( dom 𝐹 ∩ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ∅ ) → Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
| 17 |
9 15 16
|
sylancr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ) |
| 18 |
|
dmun |
⊢ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 19 |
10
|
uneq2i |
⊢ ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) |
| 20 |
18 19
|
eqtri |
⊢ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) |
| 21 |
4
|
fneq1i |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |
| 22 |
|
df-fn |
⊢ ( ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 23 |
21 22
|
bitri |
⊢ ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( Fun ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∧ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) ) ) |
| 24 |
17 20 23
|
sylanblrc |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ) |