Metamath Proof Explorer


Theorem wfrlem14

Description: Lemma for well-ordered recursion. Compute the value of C . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
wfrlem13.4 𝐶 = ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
Assertion wfrlem14 ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wfrlem13.1 𝑅 We 𝐴
2 wfrlem13.2 𝑅 Se 𝐴
3 wfrlem13.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
4 wfrlem13.4 𝐶 = ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
5 1 2 3 4 wfrlem13 ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) )
6 elun ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹𝑦 ∈ { 𝑧 } ) )
7 velsn ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 )
8 7 orbi2i ( ( 𝑦 ∈ dom 𝐹𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹𝑦 = 𝑧 ) )
9 6 8 bitri ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ dom 𝐹𝑦 = 𝑧 ) )
10 1 2 3 wfrlem12 ( 𝑦 ∈ dom 𝐹 → ( 𝐹𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) )
11 fnfun ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → Fun 𝐶 )
12 ssun1 𝐹 ⊆ ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
13 12 4 sseqtrri 𝐹𝐶
14 funssfv ( ( Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹 ) → ( 𝐶𝑦 ) = ( 𝐹𝑦 ) )
15 3 wfrdmcl ( 𝑦 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 )
16 fun2ssres ( ( Fun 𝐶𝐹𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) )
17 15 16 syl3an3 ( ( Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹 ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) )
18 17 fveq2d ( ( Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹 ) → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) )
19 14 18 eqeq12d ( ( Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹 ) → ( ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
20 13 19 mp3an2 ( ( Fun 𝐶𝑦 ∈ dom 𝐹 ) → ( ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
21 11 20 sylan ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹𝑦 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
22 10 21 syl5ibr ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
23 22 ex ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝑦 ∈ dom 𝐹 → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) )
24 23 pm2.43d ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ dom 𝐹 → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
25 vsnid 𝑧 ∈ { 𝑧 }
26 elun2 ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) )
27 25 26 ax-mp 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } )
28 4 reseq1i ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
29 resundir ( ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
30 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
31 1 30 ax-mp 𝑅 Fr 𝐴
32 predfrirr ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
33 ressnop0 ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ )
34 31 32 33 mp2b ( { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅
35 34 uneq2i ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ )
36 un0 ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
37 35 36 eqtri ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
38 28 29 37 3eqtri ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) )
39 38 fveq2i ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
40 39 opeq2i 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ = ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩
41 opex 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ V
42 41 elsn ( ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ↔ ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ = ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ )
43 40 42 mpbir 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ }
44 elun2 ( ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } → ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) )
45 43 44 ax-mp 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
46 45 4 eleqtrri 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ 𝐶
47 fnopfvb ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( ( 𝐶𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ↔ ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ ∈ 𝐶 ) )
48 46 47 mpbiri ( ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) ) → ( 𝐶𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
49 27 48 mpan2 ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
50 fveq2 ( 𝑦 = 𝑧 → ( 𝐶𝑦 ) = ( 𝐶𝑧 ) )
51 predeq3 ( 𝑦 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) )
52 51 reseq2d ( 𝑦 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
53 52 fveq2d ( 𝑦 = 𝑧 → ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
54 50 53 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐶𝑧 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) )
55 49 54 syl5ibrcom ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 = 𝑧 → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
56 24 55 jaod ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( ( 𝑦 ∈ dom 𝐹𝑦 = 𝑧 ) → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
57 9 56 syl5bi ( 𝐶 Fn ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )
58 5 57 syl ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( 𝑦 ∈ ( dom 𝐹 ∪ { 𝑧 } ) → ( 𝐶𝑦 ) = ( 𝐺 ‘ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) )