Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfrlem13.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfrlem13.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
|
wfrlem13.4 |
⊢ 𝐶 = ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
5 |
3
|
wfrdmss |
⊢ dom 𝐹 ⊆ 𝐴 |
6 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) |
7 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( dom 𝐹 ∪ { 𝑧 } ) |
8 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
9 |
7 8
|
sselii |
⊢ 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } ) |
10 |
4
|
dmeqi |
⊢ dom 𝐶 = dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
11 |
|
dmun |
⊢ dom ( 𝐹 ∪ { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
12 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V |
13 |
12
|
dmsnop |
⊢ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } = { 𝑧 } |
14 |
13
|
uneq2i |
⊢ ( dom 𝐹 ∪ dom { 〈 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom 𝐹 ∪ { 𝑧 } ) |
15 |
10 11 14
|
3eqtri |
⊢ dom 𝐶 = ( dom 𝐹 ∪ { 𝑧 } ) |
16 |
9 15
|
eleqtrri |
⊢ 𝑧 ∈ dom 𝐶 |
17 |
1 2 3 4
|
wfrlem15 |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
18 |
|
elssuni |
⊢ ( 𝐶 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → 𝐶 ⊆ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ⊆ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
20 |
|
df-wrecs |
⊢ wrecs ( 𝑅 , 𝐴 , 𝐺 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
21 |
3 20
|
eqtri |
⊢ 𝐹 = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
22 |
19 21
|
sseqtrrdi |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ⊆ 𝐹 ) |
23 |
|
dmss |
⊢ ( 𝐶 ⊆ 𝐹 → dom 𝐶 ⊆ dom 𝐹 ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → dom 𝐶 ⊆ dom 𝐹 ) |
25 |
24
|
sseld |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝑧 ∈ dom 𝐶 → 𝑧 ∈ dom 𝐹 ) ) |
26 |
16 25
|
mpi |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝑧 ∈ dom 𝐹 ) |
27 |
6 26
|
mtand |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
28 |
27
|
nrex |
⊢ ¬ ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ |
29 |
|
df-ne |
⊢ ( ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ↔ ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ ) |
30 |
|
difss |
⊢ ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴 |
31 |
1 2
|
tz6.26i |
⊢ ( ( ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
32 |
30 31
|
mpan |
⊢ ( ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
33 |
29 32
|
sylbir |
⊢ ( ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
34 |
28 33
|
mt3 |
⊢ ( 𝐴 ∖ dom 𝐹 ) = ∅ |
35 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ dom 𝐹 ↔ ( 𝐴 ∖ dom 𝐹 ) = ∅ ) |
36 |
34 35
|
mpbir |
⊢ 𝐴 ⊆ dom 𝐹 |
37 |
5 36
|
eqssi |
⊢ dom 𝐹 = 𝐴 |