Metamath Proof Explorer


Theorem wfrlem16

Description: Lemma for well-ordered recursion. If z is R minimal in ( A \ dom F ) , then C is acceptable and thus a subset of F , but dom C is bigger than dom F . Thus, z cannot be minimal, so ( A \ dom F ) must be empty, and (due to wfrdmss ), dom F = A . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypotheses wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
wfrlem13.4 𝐶 = ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
Assertion wfrlem16 dom 𝐹 = 𝐴

Proof

Step Hyp Ref Expression
1 wfrlem13.1 𝑅 We 𝐴
2 wfrlem13.2 𝑅 Se 𝐴
3 wfrlem13.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
4 wfrlem13.4 𝐶 = ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
5 3 wfrdmss dom 𝐹𝐴
6 eldifn ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 )
7 ssun2 { 𝑧 } ⊆ ( dom 𝐹 ∪ { 𝑧 } )
8 vsnid 𝑧 ∈ { 𝑧 }
9 7 8 sselii 𝑧 ∈ ( dom 𝐹 ∪ { 𝑧 } )
10 4 dmeqi dom 𝐶 = dom ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
11 dmun dom ( 𝐹 ∪ { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) = ( dom 𝐹 ∪ dom { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } )
12 fvex ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V
13 12 dmsnop dom { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } = { 𝑧 }
14 13 uneq2i ( dom 𝐹 ∪ dom { ⟨ 𝑧 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ⟩ } ) = ( dom 𝐹 ∪ { 𝑧 } )
15 10 11 14 3eqtri dom 𝐶 = ( dom 𝐹 ∪ { 𝑧 } )
16 9 15 eleqtrri 𝑧 ∈ dom 𝐶
17 1 2 3 4 wfrlem15 ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } )
18 elssuni ( 𝐶 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → 𝐶 { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } )
19 17 18 syl ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶 { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } )
20 df-wrecs wrecs ( 𝑅 , 𝐴 , 𝐺 ) = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
21 3 20 eqtri 𝐹 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐺 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
22 19 21 sseqtrrdi ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝐶𝐹 )
23 dmss ( 𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹 )
24 22 23 syl ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → dom 𝐶 ⊆ dom 𝐹 )
25 24 sseld ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → ( 𝑧 ∈ dom 𝐶𝑧 ∈ dom 𝐹 ) )
26 16 25 mpi ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → 𝑧 ∈ dom 𝐹 )
27 6 26 mtand ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ )
28 27 nrex ¬ ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅
29 df-ne ( ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ↔ ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ )
30 difss ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴
31 1 2 tz6.26i ( ( ( 𝐴 ∖ dom 𝐹 ) ⊆ 𝐴 ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ )
32 30 31 mpan ( ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ )
33 29 32 sylbir ( ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ )
34 28 33 mt3 ( 𝐴 ∖ dom 𝐹 ) = ∅
35 ssdif0 ( 𝐴 ⊆ dom 𝐹 ↔ ( 𝐴 ∖ dom 𝐹 ) = ∅ )
36 34 35 mpbir 𝐴 ⊆ dom 𝐹
37 5 36 eqssi dom 𝐹 = 𝐴