| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wfrlem13OLD.1 | 
							⊢ 𝑅  We  𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							wfrlem13OLD.2 | 
							⊢ 𝑅  Se  𝐴  | 
						
						
							| 3 | 
							
								
							 | 
							wfrlem13OLD.3 | 
							⊢ 𝐹  =  wrecs ( 𝑅 ,  𝐴 ,  𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							wfrlem13OLD.4 | 
							⊢ 𝐶  =  ( 𝐹  ∪  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  | 
						
						
							| 5 | 
							
								3
							 | 
							wfrdmssOLD | 
							⊢ dom  𝐹  ⊆  𝐴  | 
						
						
							| 6 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  𝑧  ∈  dom  𝐹 )  | 
						
						
							| 7 | 
							
								
							 | 
							ssun2 | 
							⊢ { 𝑧 }  ⊆  ( dom  𝐹  ∪  { 𝑧 } )  | 
						
						
							| 8 | 
							
								
							 | 
							vsnid | 
							⊢ 𝑧  ∈  { 𝑧 }  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sselii | 
							⊢ 𝑧  ∈  ( dom  𝐹  ∪  { 𝑧 } )  | 
						
						
							| 10 | 
							
								4
							 | 
							dmeqi | 
							⊢ dom  𝐶  =  dom  ( 𝐹  ∪  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  | 
						
						
							| 11 | 
							
								
							 | 
							dmun | 
							⊢ dom  ( 𝐹  ∪  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  =  ( dom  𝐹  ∪  dom  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  | 
						
						
							| 12 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) )  ∈  V  | 
						
						
							| 13 | 
							
								12
							 | 
							dmsnop | 
							⊢ dom  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 }  =  { 𝑧 }  | 
						
						
							| 14 | 
							
								13
							 | 
							uneq2i | 
							⊢ ( dom  𝐹  ∪  dom  { 〈 𝑧 ,  ( 𝐺 ‘ ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) 〉 } )  =  ( dom  𝐹  ∪  { 𝑧 } )  | 
						
						
							| 15 | 
							
								10 11 14
							 | 
							3eqtri | 
							⊢ dom  𝐶  =  ( dom  𝐹  ∪  { 𝑧 } )  | 
						
						
							| 16 | 
							
								9 15
							 | 
							eleqtrri | 
							⊢ 𝑧  ∈  dom  𝐶  | 
						
						
							| 17 | 
							
								1 2 3 4
							 | 
							wfrlem15OLD | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  𝐶  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 18 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝐶  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  →  𝐶  ⊆  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  𝐶  ⊆  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  | 
						
						
							| 20 | 
							
								
							 | 
							dfwrecsOLD | 
							⊢ wrecs ( 𝑅 ,  𝐴 ,  𝐺 )  =  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  | 
						
						
							| 21 | 
							
								3 20
							 | 
							eqtri | 
							⊢ 𝐹  =  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐺 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sseqtrrdi | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  𝐶  ⊆  𝐹 )  | 
						
						
							| 23 | 
							
								
							 | 
							dmss | 
							⊢ ( 𝐶  ⊆  𝐹  →  dom  𝐶  ⊆  dom  𝐹 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  dom  𝐶  ⊆  dom  𝐹 )  | 
						
						
							| 25 | 
							
								24
							 | 
							sseld | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  ( 𝑧  ∈  dom  𝐶  →  𝑧  ∈  dom  𝐹 ) )  | 
						
						
							| 26 | 
							
								16 25
							 | 
							mpi | 
							⊢ ( ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  ∧  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  →  𝑧  ∈  dom  𝐹 )  | 
						
						
							| 27 | 
							
								6 26
							 | 
							mtand | 
							⊢ ( 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 )  →  ¬  Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  | 
						
						
							| 28 | 
							
								27
							 | 
							nrex | 
							⊢ ¬  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅  | 
						
						
							| 29 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( 𝐴  ∖  dom  𝐹 )  ≠  ∅  ↔  ¬  ( 𝐴  ∖  dom  𝐹 )  =  ∅ )  | 
						
						
							| 30 | 
							
								
							 | 
							difss | 
							⊢ ( 𝐴  ∖  dom  𝐹 )  ⊆  𝐴  | 
						
						
							| 31 | 
							
								1 2
							 | 
							tz6.26i | 
							⊢ ( ( ( 𝐴  ∖  dom  𝐹 )  ⊆  𝐴  ∧  ( 𝐴  ∖  dom  𝐹 )  ≠  ∅ )  →  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							mpan | 
							⊢ ( ( 𝐴  ∖  dom  𝐹 )  ≠  ∅  →  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							sylbir | 
							⊢ ( ¬  ( 𝐴  ∖  dom  𝐹 )  =  ∅  →  ∃ 𝑧  ∈  ( 𝐴  ∖  dom  𝐹 ) Pred ( 𝑅 ,  ( 𝐴  ∖  dom  𝐹 ) ,  𝑧 )  =  ∅ )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							mt3 | 
							⊢ ( 𝐴  ∖  dom  𝐹 )  =  ∅  | 
						
						
							| 35 | 
							
								
							 | 
							ssdif0 | 
							⊢ ( 𝐴  ⊆  dom  𝐹  ↔  ( 𝐴  ∖  dom  𝐹 )  =  ∅ )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							mpbir | 
							⊢ 𝐴  ⊆  dom  𝐹  | 
						
						
							| 37 | 
							
								5 36
							 | 
							eqssi | 
							⊢ dom  𝐹  =  𝐴  |