| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem1OLD.1 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | wfrlem3OLDa.2 | ⊢ 𝐺  ∈  V | 
						
							| 3 |  | fneq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  Fn  𝑧  ↔  𝐺  Fn  𝑧 ) ) | 
						
							| 4 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑤 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 5 |  | reseq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) )  =  ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) | 
						
							| 7 | 4 6 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  ↔  ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 8 | 7 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) )  ↔  ∀ 𝑤  ∈  𝑧 ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 9 | 3 8 | 3anbi13d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) )  ↔  ( 𝐺  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) ) | 
						
							| 10 | 9 | exbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) )  ↔  ∃ 𝑧 ( 𝐺  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) ) | 
						
							| 11 | 1 | wfrlem1OLD | ⊢ 𝐵  =  { 𝑔  ∣  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) } | 
						
							| 12 | 2 10 11 | elab2 | ⊢ ( 𝐺  ∈  𝐵  ↔  ∃ 𝑧 ( 𝐺  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝐺 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐺  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) |