Metamath Proof Explorer


Theorem wfrlem3a

Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. (Contributed by Scott Fenton, 31-Jul-2020)

Ref Expression
Hypotheses wfrlem1.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
wfrlem3a.2 𝐺 ∈ V
Assertion wfrlem3a ( 𝐺𝐵 ↔ ∃ 𝑧 ( 𝐺 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wfrlem1.1 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥𝐴 ∧ ∀ 𝑦𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦𝑥 ( 𝑓𝑦 ) = ( 𝐹 ‘ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) }
2 wfrlem3a.2 𝐺 ∈ V
3 fneq1 ( 𝑔 = 𝐺 → ( 𝑔 Fn 𝑧𝐺 Fn 𝑧 ) )
4 fveq1 ( 𝑔 = 𝐺 → ( 𝑔𝑤 ) = ( 𝐺𝑤 ) )
5 reseq1 ( 𝑔 = 𝐺 → ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) )
6 5 fveq2d ( 𝑔 = 𝐺 → ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) )
7 4 6 eqeq12d ( 𝑔 = 𝐺 → ( ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )
8 7 ralbidv ( 𝑔 = 𝐺 → ( ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤𝑧 ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )
9 3 8 3anbi13d ( 𝑔 = 𝐺 → ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐺 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) )
10 9 exbidv ( 𝑔 = 𝐺 → ( ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ∃ 𝑧 ( 𝐺 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) )
11 1 wfrlem1 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝑔𝑤 ) = ( 𝐹 ‘ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) }
12 2 10 11 elab2 ( 𝐺𝐵 ↔ ∃ 𝑧 ( 𝐺 Fn 𝑧 ∧ ( 𝑧𝐴 ∧ ∀ 𝑤𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤𝑧 ( 𝐺𝑤 ) = ( 𝐹 ‘ ( 𝐺 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) )