| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem4OLD.2 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 2 | 1 | wfrlem2OLD | ⊢ ( 𝑔  ∈  𝐵  →  Fun  𝑔 ) | 
						
							| 3 | 2 | funfnd | ⊢ ( 𝑔  ∈  𝐵  →  𝑔  Fn  dom  𝑔 ) | 
						
							| 4 |  | fnresin1 | ⊢ ( 𝑔  Fn  dom  𝑔  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑔  ∈  𝐵  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 7 | 1 | wfrlem1OLD | ⊢ 𝐵  =  { 𝑔  ∣  ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) } | 
						
							| 8 | 7 | eqabri | ⊢ ( 𝑔  ∈  𝐵  ↔  ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 9 |  | fndm | ⊢ ( 𝑔  Fn  𝑏  →  dom  𝑔  =  𝑏 ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( 𝑔  Fn  𝑏  →  ( ∀ 𝑎  ∈  dom  𝑔 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ↔  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 11 | 10 | biimpar | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  →  ∀ 𝑎  ∈  dom  𝑔 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) | 
						
							| 12 |  | rsp | ⊢ ( ∀ 𝑎  ∈  dom  𝑔 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  →  ( 𝑎  ∈  dom  𝑔  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  →  ( 𝑎  ∈  dom  𝑔  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 14 | 13 | 3adant2 | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  →  ( 𝑎  ∈  dom  𝑔  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  →  ( 𝑎  ∈  dom  𝑔  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 16 | 8 15 | sylbi | ⊢ ( 𝑔  ∈  𝐵  →  ( 𝑎  ∈  dom  𝑔  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 17 |  | elinel1 | ⊢ ( 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ )  →  𝑎  ∈  dom  𝑔 ) | 
						
							| 18 | 16 17 | impel | ⊢ ( ( 𝑔  ∈  𝐵  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) | 
						
							| 20 |  | fvres | ⊢ ( 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 22 |  | resres | ⊢ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  ( 𝑔  ↾  ( ( dom  𝑔  ∩  dom  ℎ )  ∩  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) | 
						
							| 23 |  | predss | ⊢ Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) | 
						
							| 24 |  | sseqin2 | ⊢ ( Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ( dom  𝑔  ∩  dom  ℎ )  ∩  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) | 
						
							| 25 | 23 24 | mpbi | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ∩  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) | 
						
							| 26 | 1 | wfrlem1OLD | ⊢ 𝐵  =  { ℎ  ∣  ∃ 𝑐 ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) } | 
						
							| 27 | 26 | eqabri | ⊢ ( ℎ  ∈  𝐵  ↔  ∃ 𝑐 ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) | 
						
							| 28 |  | 3an6 | ⊢ ( ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  ∧  ( ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  ↔  ( ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) ) | 
						
							| 29 | 28 | 2exbii | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  ∧  ( ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  ↔  ∃ 𝑏 ∃ 𝑐 ( ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) ) | 
						
							| 30 |  | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  ↔  ( ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ∃ 𝑐 ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  ∧  ( ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  ↔  ( ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ∃ 𝑐 ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) ) ) | 
						
							| 32 |  | ssinss1 | ⊢ ( 𝑏  ⊆  𝐴  →  ( 𝑏  ∩  𝑐 )  ⊆  𝐴 ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( 𝑏  ∩  𝑐 )  ⊆  𝐴 ) | 
						
							| 34 |  | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 | 
						
							| 35 |  | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 | 
						
							| 36 | 34 35 | nfan | ⊢ Ⅎ 𝑎 ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) | 
						
							| 37 |  | elinel1 | ⊢ ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  𝑎  ∈  𝑏 ) | 
						
							| 38 |  | rsp | ⊢ ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  →  ( 𝑎  ∈  𝑏  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 ) ) | 
						
							| 39 | 37 38 | syl5com | ⊢ ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 ) ) | 
						
							| 40 |  | elinel2 | ⊢ ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  𝑎  ∈  𝑐 ) | 
						
							| 41 |  | rsp | ⊢ ( ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐  →  ( 𝑎  ∈  𝑐  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) ) | 
						
							| 42 | 40 41 | syl5com | ⊢ ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  ( ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) ) | 
						
							| 43 | 39 42 | anim12d | ⊢ ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  ( ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) ) ) | 
						
							| 44 |  | ssin | ⊢ ( ( Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ↔  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) | 
						
							| 45 | 44 | biimpi | ⊢ ( ( Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) | 
						
							| 46 | 43 45 | syl6com | ⊢ ( ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  →  ( 𝑎  ∈  ( 𝑏  ∩  𝑐 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) | 
						
							| 47 | 36 46 | ralrimi | ⊢ ( ( ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  →  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) | 
						
							| 48 | 47 | ad2ant2l | ⊢ ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) | 
						
							| 49 | 33 48 | jca | ⊢ ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( 𝑏  ∩  𝑐 )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) | 
						
							| 50 |  | fndm | ⊢ ( ℎ  Fn  𝑐  →  dom  ℎ  =  𝑐 ) | 
						
							| 51 | 9 50 | ineqan12d | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  →  ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 ) ) | 
						
							| 52 |  | sseq1 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ↔  ( 𝑏  ∩  𝑐 )  ⊆  𝐴 ) ) | 
						
							| 53 |  | sseq2 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 )  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ )  ↔  Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) | 
						
							| 54 | 53 | raleqbi1dv | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 )  →  ( ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ )  ↔  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) | 
						
							| 55 | 52 54 | anbi12d | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 )  →  ( ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) )  ↔  ( ( 𝑏  ∩  𝑐 )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) ) | 
						
							| 56 | 55 | imbi2d | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( 𝑏  ∩  𝑐 )  →  ( ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) )  ↔  ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( 𝑏  ∩  𝑐 )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) ) ) | 
						
							| 57 | 51 56 | syl | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  →  ( ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) )  ↔  ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( 𝑏  ∩  𝑐 )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( 𝑏  ∩  𝑐 ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( 𝑏  ∩  𝑐 ) ) ) ) ) | 
						
							| 58 | 49 57 | mpbiri | ⊢ ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  →  ( ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 60 | 59 | 3adant3 | ⊢ ( ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  ∧  ( ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 61 | 60 | exlimivv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( ( 𝑔  Fn  𝑏  ∧  ℎ  Fn  𝑐 )  ∧  ( ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 ) )  ∧  ( ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 62 | 31 61 | sylbir | ⊢ ( ( ∃ 𝑏 ( 𝑔  Fn  𝑏  ∧  ( 𝑏  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑏 )  ∧  ∀ 𝑎  ∈  𝑏 ( 𝑔 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) )  ∧  ∃ 𝑐 ( ℎ  Fn  𝑐  ∧  ( 𝑐  ⊆  𝐴  ∧  ∀ 𝑎  ∈  𝑐 Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  𝑐 )  ∧  ∀ 𝑎  ∈  𝑐 ( ℎ ‘ 𝑎 )  =  ( 𝐹 ‘ ( ℎ  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 63 | 8 27 62 | syl2anb | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 66 |  | preddowncl | ⊢ ( ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) Pred ( 𝑅 ,  𝐴 ,  𝑎 )  ⊆  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ )  →  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) | 
						
							| 67 | 64 65 66 | sylc | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) | 
						
							| 68 | 25 67 | eqtrid | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( dom  𝑔  ∩  dom  ℎ )  ∩  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) | 
						
							| 69 | 68 | reseq2d | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( 𝑔  ↾  ( ( dom  𝑔  ∩  dom  ℎ )  ∩  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  =  ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) | 
						
							| 70 | 22 69 | eqtrid | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  =  ( 𝐹 ‘ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑎 ) ) ) ) | 
						
							| 72 | 19 21 71 | 3eqtr4d | ⊢ ( ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  ∧  𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) | 
						
							| 73 | 72 | ralrimiva | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) | 
						
							| 74 | 6 73 | jca | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) |