| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem5OLD.1 | ⊢ 𝑅  We  𝐴 | 
						
							| 2 |  | wfrlem5OLD.2 | ⊢ 𝑅  Se  𝐴 | 
						
							| 3 |  | wfrlem5OLD.3 | ⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 6 | 4 5 | breldm | ⊢ ( 𝑥 𝑔 𝑢  →  𝑥  ∈  dom  𝑔 ) | 
						
							| 7 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 8 | 4 7 | breldm | ⊢ ( 𝑥 ℎ 𝑣  →  𝑥  ∈  dom  ℎ ) | 
						
							| 9 | 6 8 | anim12i | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  ( 𝑥  ∈  dom  𝑔  ∧  𝑥  ∈  dom  ℎ ) ) | 
						
							| 10 |  | elin | ⊢ ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( 𝑥  ∈  dom  𝑔  ∧  𝑥  ∈  dom  ℎ ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 12 |  | anandi | ⊢ ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 ) )  ↔  ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 )  ∧  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) ) ) | 
						
							| 13 | 5 | brresi | ⊢ ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ↔  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 ) ) | 
						
							| 14 | 7 | brresi | ⊢ ( 𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  ↔  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) ) | 
						
							| 15 | 13 14 | anbi12i | ⊢ ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  ↔  ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 𝑔 𝑢 )  ∧  ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑥 ℎ 𝑣 ) ) ) | 
						
							| 16 | 12 15 | sylbb2 | ⊢ ( ( 𝑥  ∈  ( dom  𝑔  ∩  dom  ℎ )  ∧  ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 ) )  →  ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 17 | 11 16 | mpancom | ⊢ ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 18 | 3 | wfrlem3OLD | ⊢ ( 𝑔  ∈  𝐵  →  dom  𝑔  ⊆  𝐴 ) | 
						
							| 19 |  | ssinss1 | ⊢ ( dom  𝑔  ⊆  𝐴  →  ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴 ) | 
						
							| 20 |  | wess | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  ( 𝑅  We  𝐴  →  𝑅  We  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 21 | 1 20 | mpi | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  𝑅  We  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 22 |  | sess2 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  ( 𝑅  Se  𝐴  →  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 23 | 2 22 | mpi | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 24 | 21 23 | jca | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  ⊆  𝐴  →  ( 𝑅  We  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 25 | 18 19 24 | 3syl | ⊢ ( 𝑔  ∈  𝐵  →  ( 𝑅  We  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( 𝑅  We  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 27 | 3 | wfrlem4OLD | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 28 | 3 | wfrlem4OLD | ⊢ ( ( ℎ  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 )  ∧  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) ) | 
						
							| 29 | 28 | ancoms | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 )  ∧  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) ) | 
						
							| 30 |  | incom | ⊢ ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  ℎ  ∩  dom  𝑔 ) | 
						
							| 31 | 30 | reseq2i | ⊢ ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) | 
						
							| 32 | 31 | fneq1i | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  𝑔  ∩  dom  ℎ ) ) | 
						
							| 33 | 30 | fneq2i | ⊢ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 ) ) | 
						
							| 34 | 32 33 | bitri | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ↔  ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 ) ) | 
						
							| 35 | 31 | fveq1i | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 ) | 
						
							| 36 |  | predeq2 | ⊢ ( ( dom  𝑔  ∩  dom  ℎ )  =  ( dom  ℎ  ∩  dom  𝑔 )  →  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) | 
						
							| 37 | 30 36 | ax-mp | ⊢ Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 )  =  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) | 
						
							| 38 | 31 37 | reseq12i | ⊢ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) )  =  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) | 
						
							| 39 | 38 | fveq2i | ⊢ ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) | 
						
							| 40 | 35 39 | eqeq12i | ⊢ ( ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  ↔  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) | 
						
							| 41 | 30 40 | raleqbii | ⊢ ( ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) )  ↔  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) | 
						
							| 42 | 34 41 | anbi12i | ⊢ ( ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) )  ↔  ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  Fn  ( dom  ℎ  ∩  dom  𝑔 )  ∧  ∀ 𝑎  ∈  ( dom  ℎ  ∩  dom  𝑔 ) ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  ℎ  ∩  dom  𝑔 ) )  ↾  Pred ( 𝑅 ,  ( dom  ℎ  ∩  dom  𝑔 ) ,  𝑎 ) ) ) ) ) | 
						
							| 43 | 29 42 | sylibr | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) ) | 
						
							| 44 |  | wfr3g | ⊢ ( ( ( 𝑅  We  ( dom  𝑔  ∩  dom  ℎ )  ∧  𝑅  Se  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) )  ∧  ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  Fn  ( dom  𝑔  ∩  dom  ℎ )  ∧  ∀ 𝑎  ∈  ( dom  𝑔  ∩  dom  ℎ ) ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↾  Pred ( 𝑅 ,  ( dom  𝑔  ∩  dom  ℎ ) ,  𝑎 ) ) ) ) )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 45 | 26 27 43 44 | syl3anc | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  =  ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 46 | 45 | breqd | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  ↔  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 47 | 46 | biimprd | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( 𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣  →  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 ) ) | 
						
							| 48 | 3 | wfrlem2OLD | ⊢ ( 𝑔  ∈  𝐵  →  Fun  𝑔 ) | 
						
							| 49 |  | funres | ⊢ ( Fun  𝑔  →  Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) ) | 
						
							| 50 |  | dffun2 | ⊢ ( Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ↔  ( Rel  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  ∧  ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) ) | 
						
							| 51 | 50 | simprbi | ⊢ ( Fun  ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) )  →  ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 52 |  | 2sp | ⊢ ( ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 53 | 52 | sps | ⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 54 | 48 49 51 53 | 4syl | ⊢ ( 𝑔  ∈  𝐵  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 56 | 47 55 | sylan2d | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑥 ( 𝑔  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑢  ∧  𝑥 ( ℎ  ↾  ( dom  𝑔  ∩  dom  ℎ ) ) 𝑣 )  →  𝑢  =  𝑣 ) ) | 
						
							| 57 | 17 56 | syl5 | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ℎ  ∈  𝐵 )  →  ( ( 𝑥 𝑔 𝑢  ∧  𝑥 ℎ 𝑣 )  →  𝑢  =  𝑣 ) ) |