Metamath Proof Explorer


Theorem wfrlem8

Description: Lemma for well-ordered recursion. Compute the prececessor class for an R minimal element of ( A \ dom F ) . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6.1 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfrlem8 ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , dom 𝐹 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 wfrlem6.1 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
2 1 wfrdmss dom 𝐹𝐴
3 predpredss ( dom 𝐹𝐴 → Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) )
4 2 3 ax-mp Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 )
5 4 biantru ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ∧ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
6 preddif Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) )
7 6 eqeq1i ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) = ∅ )
8 ssdif0 ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) = ∅ )
9 7 8 bitr4i ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) )
10 eqss ( Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ∧ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
11 5 9 10 3bitr4i ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , dom 𝐹 , 𝑋 ) )