Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem6.1 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
2 |
1
|
wfrdmss |
⊢ dom 𝐹 ⊆ 𝐴 |
3 |
|
predpredss |
⊢ ( dom 𝐹 ⊆ 𝐴 → Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
4 |
2 3
|
ax-mp |
⊢ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) |
5 |
4
|
biantru |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ∧ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
6 |
|
preddif |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) |
7 |
6
|
eqeq1i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) = ∅ ) |
8 |
|
ssdif0 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) = ∅ ) |
9 |
7 8
|
bitr4i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) |
10 |
|
eqss |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ∧ Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
11 |
5 9 10
|
3bitr4i |
⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑋 ) = ∅ ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , dom 𝐹 , 𝑋 ) ) |