| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrfun.1 | ⊢ 𝐹  =  wrecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 |  | wefr | ⊢ ( 𝑅  We  𝐴  →  𝑅  Fr  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Fr  𝐴 ) | 
						
							| 4 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 5 |  | sopo | ⊢ ( 𝑅  Or  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑅  We  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Po  𝐴 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Se  𝐴 ) | 
						
							| 9 | 3 7 8 | 3jca | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 ) ) | 
						
							| 10 |  | df-wrecs | ⊢ wrecs ( 𝑅 ,  𝐴 ,  𝐺 )  =  frecs ( 𝑅 ,  𝐴 ,  ( 𝐺  ∘  2nd  ) ) | 
						
							| 11 | 1 10 | eqtri | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  ( 𝐺  ∘  2nd  ) ) | 
						
							| 12 | 11 | fprresex | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) | 
						
							| 13 | 9 12 | sylan | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) |