Step |
Hyp |
Ref |
Expression |
1 |
|
winalim2 |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
4 |
2 3
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
5 |
|
alephle |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) |
6 |
4 5
|
syl |
⊢ ( Lim 𝑥 → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) |
7 |
6
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) |
8 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = 𝐴 ) |
9 |
7 8
|
sseqtrd |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) |
10 |
8
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) ) |
11 |
|
alephsing |
⊢ ( Lim 𝑥 → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) ) |
12 |
11
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) ) |
13 |
10 12
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝑥 ) ) |
14 |
|
elwina |
⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑦 ≺ 𝑧 ) ) |
15 |
14
|
simp2bi |
⊢ ( 𝐴 ∈ Inaccw → ( cf ‘ 𝐴 ) = 𝐴 ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = 𝐴 ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝑥 ) = 𝐴 ) |
18 |
|
cfle |
⊢ ( cf ‘ 𝑥 ) ⊆ 𝑥 |
19 |
17 18
|
eqsstrrdi |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝐴 ⊆ 𝑥 ) |
20 |
9 19
|
eqssd |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 = 𝐴 ) |
21 |
20
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
22 |
21 8
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝐴 ) = 𝐴 ) |
23 |
1 22
|
exlimddv |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ℵ ‘ 𝐴 ) = 𝐴 ) |