Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | winainf | ⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwina | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) | |
2 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
3 | eleq1 | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) | |
4 | 2 3 | mpbii | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
5 | winainflem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) | |
6 | 4 5 | syl3an2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) |
7 | 1 6 | sylbi | ⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) |