Metamath Proof Explorer


Theorem winainf

Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winainf ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 elwina ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
2 cfon ( cf ‘ 𝐴 ) ∈ On
3 eleq1 ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) )
4 2 3 mpbii ( ( cf ‘ 𝐴 ) = 𝐴𝐴 ∈ On )
5 winainflem ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ω ⊆ 𝐴 )
6 4 5 syl3an2 ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ω ⊆ 𝐴 )
7 1 6 sylbi ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 )