Step |
Hyp |
Ref |
Expression |
1 |
|
nn0suc |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ≠ ∅ ) |
3 |
2
|
necon2bi |
⊢ ( 𝐴 = ∅ → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
4 |
|
vex |
⊢ 𝑧 ∈ V |
5 |
4
|
sucid |
⊢ 𝑧 ∈ suc 𝑧 |
6 |
|
eleq2 |
⊢ ( 𝐴 = suc 𝑧 → ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ suc 𝑧 ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝐴 = suc 𝑧 → 𝑧 ∈ 𝐴 ) |
8 |
7
|
adantl |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝑧 ∈ 𝐴 ) |
9 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≺ 𝑦 ↔ 𝑧 ≺ 𝑦 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ≺ 𝑦 ) ) |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ≺ 𝑦 ↔ 𝑧 ≺ 𝑤 ) ) |
12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ≺ 𝑦 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
13 |
10 12
|
bitrdi |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
14 |
13
|
rspcv |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
15 |
8 14
|
syl |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
16 |
|
eleq2 |
⊢ ( 𝐴 = suc 𝑧 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ suc 𝑧 ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝐴 = suc 𝑧 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ suc 𝑧 ) |
18 |
17
|
3ad2antl2 |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ suc 𝑧 ) |
19 |
|
nnon |
⊢ ( 𝑧 ∈ ω → 𝑧 ∈ On ) |
20 |
|
suceloni |
⊢ ( 𝑧 ∈ On → suc 𝑧 ∈ On ) |
21 |
19 20
|
syl |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ On ) |
22 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑧 → ( 𝐴 ∈ On ↔ suc 𝑧 ∈ On ) ) |
23 |
22
|
biimparc |
⊢ ( ( suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On ) |
24 |
21 23
|
sylan |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ∈ On ) |
26 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ On ) |
27 |
25 26
|
sylan |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ On ) |
28 |
|
simpl1 |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑧 ∈ ω ) |
29 |
28 19
|
syl |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑧 ∈ On ) |
30 |
|
onsssuc |
⊢ ( ( 𝑤 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ∈ suc 𝑧 ) ) |
31 |
27 29 30
|
syl2anc |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ∈ suc 𝑧 ) ) |
32 |
18 31
|
mpbird |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ⊆ 𝑧 ) |
33 |
|
ssdomg |
⊢ ( 𝑧 ∈ V → ( 𝑤 ⊆ 𝑧 → 𝑤 ≼ 𝑧 ) ) |
34 |
4 32 33
|
mpsyl |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ≼ 𝑧 ) |
35 |
|
domnsym |
⊢ ( 𝑤 ≼ 𝑧 → ¬ 𝑧 ≺ 𝑤 ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → ¬ 𝑧 ≺ 𝑤 ) |
37 |
36
|
nrexdv |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ¬ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
38 |
37
|
3expia |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ¬ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
39 |
15 38
|
pm2.65d |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) |
40 |
39
|
intn3an3d |
⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
41 |
40
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
42 |
3 41
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
43 |
1 42
|
syl |
⊢ ( 𝐴 ∈ ω → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
44 |
43
|
con2i |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ¬ 𝐴 ∈ ω ) |
45 |
|
ordom |
⊢ Ord ω |
46 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
47 |
46
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → Ord 𝐴 ) |
48 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord 𝐴 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
49 |
45 47 48
|
sylancr |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
50 |
44 49
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) |