Metamath Proof Explorer


Theorem winainflem

Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winainflem ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ω ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 nn0suc ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) )
2 simp1 ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → 𝐴 ≠ ∅ )
3 2 necon2bi ( 𝐴 = ∅ → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
4 vex 𝑧 ∈ V
5 4 sucid 𝑧 ∈ suc 𝑧
6 eleq2 ( 𝐴 = suc 𝑧 → ( 𝑧𝐴𝑧 ∈ suc 𝑧 ) )
7 5 6 mpbiri ( 𝐴 = suc 𝑧𝑧𝐴 )
8 7 adantl ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝑧𝐴 )
9 breq1 ( 𝑥 = 𝑧 → ( 𝑥𝑦𝑧𝑦 ) )
10 9 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑦𝐴 𝑧𝑦 ) )
11 breq2 ( 𝑦 = 𝑤 → ( 𝑧𝑦𝑧𝑤 ) )
12 11 cbvrexvw ( ∃ 𝑦𝐴 𝑧𝑦 ↔ ∃ 𝑤𝐴 𝑧𝑤 )
13 10 12 bitrdi ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑤𝐴 𝑧𝑤 ) )
14 13 rspcv ( 𝑧𝐴 → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃ 𝑤𝐴 𝑧𝑤 ) )
15 8 14 syl ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃ 𝑤𝐴 𝑧𝑤 ) )
16 eleq2 ( 𝐴 = suc 𝑧 → ( 𝑤𝐴𝑤 ∈ suc 𝑧 ) )
17 16 biimpa ( ( 𝐴 = suc 𝑧𝑤𝐴 ) → 𝑤 ∈ suc 𝑧 )
18 17 3ad2antl2 ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑤 ∈ suc 𝑧 )
19 nnon ( 𝑧 ∈ ω → 𝑧 ∈ On )
20 suceloni ( 𝑧 ∈ On → suc 𝑧 ∈ On )
21 19 20 syl ( 𝑧 ∈ ω → suc 𝑧 ∈ On )
22 eleq1 ( 𝐴 = suc 𝑧 → ( 𝐴 ∈ On ↔ suc 𝑧 ∈ On ) )
23 22 biimparc ( ( suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On )
24 21 23 sylan ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On )
25 24 3adant3 ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → 𝐴 ∈ On )
26 onelon ( ( 𝐴 ∈ On ∧ 𝑤𝐴 ) → 𝑤 ∈ On )
27 25 26 sylan ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑤 ∈ On )
28 simpl1 ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑧 ∈ ω )
29 28 19 syl ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑧 ∈ On )
30 onsssuc ( ( 𝑤 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑤𝑧𝑤 ∈ suc 𝑧 ) )
31 27 29 30 syl2anc ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → ( 𝑤𝑧𝑤 ∈ suc 𝑧 ) )
32 18 31 mpbird ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑤𝑧 )
33 ssdomg ( 𝑧 ∈ V → ( 𝑤𝑧𝑤𝑧 ) )
34 4 32 33 mpsyl ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → 𝑤𝑧 )
35 domnsym ( 𝑤𝑧 → ¬ 𝑧𝑤 )
36 34 35 syl ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) ∧ 𝑤𝐴 ) → ¬ 𝑧𝑤 )
37 36 nrexdv ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ¬ ∃ 𝑤𝐴 𝑧𝑤 )
38 37 3expia ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃ 𝑤𝐴 𝑧𝑤 ) )
39 15 38 pm2.65d ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
40 39 intn3an3d ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
41 40 rexlimiva ( ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
42 3 41 jaoi ( ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
43 1 42 syl ( 𝐴 ∈ ω → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
44 43 con2i ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ¬ 𝐴 ∈ ω )
45 ordom Ord ω
46 eloni ( 𝐴 ∈ On → Ord 𝐴 )
47 46 3ad2ant2 ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → Ord 𝐴 )
48 ordtri1 ( ( Ord ω ∧ Ord 𝐴 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) )
49 45 47 48 sylancr ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) )
50 44 49 mpbird ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → ω ⊆ 𝐴 )