Step |
Hyp |
Ref |
Expression |
1 |
|
winainf |
⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) |
2 |
|
winacard |
⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) |
3 |
|
cardlim |
⊢ ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) |
4 |
|
sseq2 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ ( card ‘ 𝐴 ) ↔ ω ⊆ 𝐴 ) ) |
5 |
|
limeq |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( Lim ( card ‘ 𝐴 ) ↔ Lim 𝐴 ) ) |
6 |
4 5
|
bibi12d |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) ↔ ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) ) |
7 |
3 6
|
mpbii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
8 |
2 7
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
9 |
1 8
|
mpbid |
⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |