Step |
Hyp |
Ref |
Expression |
1 |
|
winacard |
⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) |
2 |
|
winainf |
⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) |
3 |
|
cardalephex |
⊢ ( ω ⊆ 𝐴 → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) ) |
5 |
1 4
|
mpbid |
⊢ ( 𝐴 ∈ Inaccw → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) |
8 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝐴 = ( ℵ ‘ 𝑥 ) ) |
9 |
8
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ℵ ‘ 𝑥 ) = 𝐴 ) |
10 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝑥 ∈ On ) |
11 |
|
onzsl |
⊢ ( 𝑥 ∈ On ↔ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) |
13 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝐴 ≠ ω ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) |
15 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
16 |
14 15
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ω ) |
17 |
|
eqtr |
⊢ ( ( 𝐴 = ( ℵ ‘ 𝑥 ) ∧ ( ℵ ‘ 𝑥 ) = ω ) → 𝐴 = ω ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝐴 = ( ℵ ‘ 𝑥 ) ∧ 𝑥 = ∅ ) → 𝐴 = ω ) |
19 |
18
|
ex |
⊢ ( 𝐴 = ( ℵ ‘ 𝑥 ) → ( 𝑥 = ∅ → 𝐴 = ω ) ) |
20 |
19
|
necon3ad |
⊢ ( 𝐴 = ( ℵ ‘ 𝑥 ) → ( 𝐴 ≠ ω → ¬ 𝑥 = ∅ ) ) |
21 |
8 13 20
|
sylc |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ¬ 𝑥 = ∅ ) |
22 |
21
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( 𝑥 = ∅ → Lim 𝑥 ) ) |
23 |
|
breq1 |
⊢ ( 𝑧 = ( ℵ ‘ 𝑦 ) → ( 𝑧 ≺ 𝑤 ↔ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
24 |
23
|
rexbidv |
⊢ ( 𝑧 = ( ℵ ‘ 𝑦 ) → ( ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
25 |
|
elwina |
⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
26 |
25
|
simp3bi |
⊢ ( 𝐴 ∈ Inaccw → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
28 |
|
suceloni |
⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) |
29 |
|
vex |
⊢ 𝑦 ∈ V |
30 |
29
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
31 |
|
alephord2i |
⊢ ( suc 𝑦 ∈ On → ( 𝑦 ∈ suc 𝑦 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) ) |
32 |
28 30 31
|
mpisyl |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) |
34 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → 𝐴 = ( ℵ ‘ 𝑥 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
36 |
35
|
ad2antll |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
37 |
34 36
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → 𝐴 = ( ℵ ‘ suc 𝑦 ) ) |
38 |
33 37
|
eleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑦 ) ∈ 𝐴 ) |
39 |
24 27 38
|
rspcdva |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
40 |
39
|
expr |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ( 𝑥 = suc 𝑦 → ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
41 |
|
iscard |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 ) ) |
42 |
41
|
simprbi |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 ) |
43 |
|
rsp |
⊢ ( ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) |
44 |
1 42 43
|
3syl |
⊢ ( 𝐴 ∈ Inaccw → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) |
45 |
44
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) |
46 |
37
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ≺ 𝐴 ↔ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
47 |
45 46
|
sylibd |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
48 |
|
alephnbtwn2 |
⊢ ¬ ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 ∧ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) |
49 |
|
pm3.21 |
⊢ ( 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) → ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 ∧ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
50 |
48 49
|
mtoi |
⊢ ( 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
51 |
47 50
|
syl6 |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
52 |
51
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) ∧ 𝑤 ∈ 𝐴 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
53 |
52
|
nrexdv |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ¬ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
54 |
53
|
expr |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ( 𝑥 = suc 𝑦 → ¬ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
55 |
40 54
|
pm2.65d |
⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ¬ 𝑥 = suc 𝑦 ) |
56 |
55
|
nrexdv |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ¬ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) |
57 |
56
|
pm2.21d |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥 ) ) |
58 |
|
simpr |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → Lim 𝑥 ) |
59 |
58
|
a1i |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → Lim 𝑥 ) ) |
60 |
22 57 59
|
3jaod |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim 𝑥 ) ) |
61 |
12 60
|
mpd |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → Lim 𝑥 ) |
62 |
9 61
|
jca |
⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |
63 |
62
|
ex |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) → ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
64 |
63
|
eximdv |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
65 |
7 64
|
syl5bi |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
66 |
6 65
|
mpd |
⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |