Metamath Proof Explorer


Theorem winaon

Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winaon ( 𝐴 ∈ Inaccw𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 elwina ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
2 cfon ( cf ‘ 𝐴 ) ∈ On
3 eleq1 ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) )
4 2 3 mpbii ( ( cf ‘ 𝐴 ) = 𝐴𝐴 ∈ On )
5 4 3ad2ant2 ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → 𝐴 ∈ On )
6 1 5 sylbi ( 𝐴 ∈ Inaccw𝐴 ∈ On )