| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑃 ‘ 𝐴 )  =  ( 𝑃 ‘ 𝐵 ) ) | 
						
							| 2 |  | fvoveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑃 ‘ ( 𝐴  +  1 ) )  =  ( 𝑃 ‘ ( 𝐵  +  1 ) ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑃 ‘ 𝐴 )  =  ( 𝑃 ‘ ( 𝐴  +  1 ) )  ↔  ( 𝑃 ‘ 𝐵 )  =  ( 𝑃 ‘ ( 𝐵  +  1 ) ) ) ) | 
						
							| 4 |  | 2fveq3 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) )  =  ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 5 | 1 | sneqd | ⊢ ( 𝐴  =  𝐵  →  { ( 𝑃 ‘ 𝐴 ) }  =  { ( 𝑃 ‘ 𝐵 ) } ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) )  =  { ( 𝑃 ‘ 𝐴 ) }  ↔  ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) )  =  { ( 𝑃 ‘ 𝐵 ) } ) ) | 
						
							| 7 | 1 2 | preq12d | ⊢ ( 𝐴  =  𝐵  →  { ( 𝑃 ‘ 𝐴 ) ,  ( 𝑃 ‘ ( 𝐴  +  1 ) ) }  =  { ( 𝑃 ‘ 𝐵 ) ,  ( 𝑃 ‘ ( 𝐵  +  1 ) ) } ) | 
						
							| 8 | 7 4 | sseq12d | ⊢ ( 𝐴  =  𝐵  →  ( { ( 𝑃 ‘ 𝐴 ) ,  ( 𝑃 ‘ ( 𝐴  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) )  ↔  { ( 𝑃 ‘ 𝐵 ) ,  ( 𝑃 ‘ ( 𝐵  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 9 | 3 6 8 | ifpbi123d | ⊢ ( 𝐴  =  𝐵  →  ( if- ( ( 𝑃 ‘ 𝐴 )  =  ( 𝑃 ‘ ( 𝐴  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) )  =  { ( 𝑃 ‘ 𝐴 ) } ,  { ( 𝑃 ‘ 𝐴 ) ,  ( 𝑃 ‘ ( 𝐴  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) )  ↔  if- ( ( 𝑃 ‘ 𝐵 )  =  ( 𝑃 ‘ ( 𝐵  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) )  =  { ( 𝑃 ‘ 𝐵 ) } ,  { ( 𝑃 ‘ 𝐵 ) ,  ( 𝑃 ‘ ( 𝐵  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |