Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐵 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐵 ) ) |
3 |
|
fveq2 |
⊢ ( ( 𝐴 + 1 ) = 𝐶 → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ 𝐶 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ 𝐶 ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) ↔ ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐶 ) ) ) |
6 |
|
2fveq3 |
⊢ ( 𝐴 = 𝐵 → ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
7 |
1
|
sneqd |
⊢ ( 𝐴 = 𝐵 → { ( 𝑃 ‘ 𝐴 ) } = { ( 𝑃 ‘ 𝐵 ) } ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } ) ) |
10 |
2 4
|
preq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } = { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ) |
11 |
6
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
12 |
10 11
|
sseq12d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
13 |
5 9 12
|
ifpbi123d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( if- ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } , { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐶 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } , { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |