Step |
Hyp |
Ref |
Expression |
1 |
|
wksonproplem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wksonproplem.b |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
3 |
|
wksonproplem.d |
⊢ 𝑊 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) } ) ) |
4 |
|
wksonproplem.w |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
6 |
|
simp1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
7 |
|
simp2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
8 |
7 1
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
10 |
9 1
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
11 |
|
wksv |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V |
12 |
11
|
a1i |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V ) |
13 |
6 8 10 12 4 3
|
mptmpoopabovd |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) } ) |
14 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
15 |
14 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
16 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑂 ‘ 𝑔 ) = ( 𝑂 ‘ 𝐺 ) ) |
17 |
16
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) = ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) ) |
18 |
17
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ↔ 𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑄 ‘ 𝑔 ) = ( 𝑄 ‘ 𝐺 ) ) |
20 |
19
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ↔ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) ↔ ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) ) |
22 |
3 13 15 15 21
|
bropfvvvv |
⊢ ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
23 |
5 5 22
|
mp2an |
⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
24 |
|
3anass |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
25 |
24
|
anbi1i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
26 |
|
df-3an |
⊢ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
27 |
25 26
|
bitr4i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
28 |
23 27
|
sylibr |
⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
29 |
2
|
biimpd |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
30 |
29
|
imdistani |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 ) → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
31 |
28 30
|
mpancom |
⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
32 |
|
df-3an |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ↔ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
33 |
31 32
|
sylibr |
⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |