| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wksonproplemOLD.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wksonproplemOLD.b | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 3 |  | wksonproplemOLD.d | ⊢ 𝑊  =  ( 𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) } ) ) | 
						
							| 4 |  | wksonproplemOLD.w | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | 
						
							| 5 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐺  ∈  V ) | 
						
							| 7 |  | simp2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 8 | 7 1 | eleqtrdi | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  𝑉 ) | 
						
							| 10 | 9 1 | eleqtrdi | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 |  | wksv | ⊢ { 〈 𝑓 ,  𝑝 〉  ∣  𝑓 ( Walks ‘ 𝐺 ) 𝑝 }  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  { 〈 𝑓 ,  𝑝 〉  ∣  𝑓 ( Walks ‘ 𝐺 ) 𝑝 }  ∈  V ) | 
						
							| 13 | 6 8 10 12 4 3 | mptmpoopabovdOLD | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) } ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 14 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑂 ‘ 𝑔 )  =  ( 𝑂 ‘ 𝐺 ) ) | 
						
							| 17 | 16 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 )  =  ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) ) | 
						
							| 18 | 17 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝  ↔  𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑄 ‘ 𝑔 )  =  ( 𝑄 ‘ 𝐺 ) ) | 
						
							| 20 | 19 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝  ↔  𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) | 
						
							| 21 | 18 20 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝  ∧  𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 )  ↔  ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝  ∧  𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) ) | 
						
							| 22 | 3 13 15 15 21 | bropfvvvv | ⊢ ( ( 𝑉  ∈  V  ∧  𝑉  ∈  V )  →  ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) ) | 
						
							| 23 | 5 5 22 | mp2an | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 24 |  | 3anass | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ↔  ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) ) | 
						
							| 25 | 24 | anbi1i | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ↔  ( ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 26 |  | df-3an | ⊢ ( ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ↔  ( ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 27 | 25 26 | bitr4i | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ↔  ( 𝐺  ∈  V  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 28 | 23 27 | sylibr | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 29 | 2 | biimpd | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 30 | 29 | imdistani | ⊢ ( ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ∧  𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 )  →  ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ∧  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 31 | 28 30 | mpancom | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ∧  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 32 |  | df-3an | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) )  ↔  ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  ∧  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | 
						
							| 33 | 31 32 | sylibr | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ( 𝐺  ∈  V  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |