Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
2 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
3 |
2
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
4 |
|
wrdexg |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∈ V → Word dom ( iEdg ‘ 𝐺 ) ∈ V ) |
5 |
3 4
|
mp1i |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ V → Word dom ( iEdg ‘ 𝐺 ) ∈ V ) |
6 |
|
wrdexg |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ V → Word ( Vtx ‘ 𝐺 ) ∈ V ) |
7 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
8 |
7
|
wlkf |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) → 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
10 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
11 |
10
|
wlkpwrd |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( Vtx ‘ 𝐺 ) ∈ V ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) → 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ) |
13 |
5 6 9 12
|
opabex2 |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ V → { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V ) |
14 |
1 13
|
ax-mp |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V |