Step |
Hyp |
Ref |
Expression |
1 |
|
wlk1walk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
3 4
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
6 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V |
7 |
6
|
inex1 |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
8 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
9 |
8
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
10 |
|
wkslem1 |
⊢ ( 𝑖 = 𝑘 → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
14 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
15 |
|
fz1fzo0m1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
16 |
|
wkslem1 |
⊢ ( 𝑖 = ( 𝑘 − 1 ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
17 |
16
|
rspcv |
⊢ ( ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
18 |
14 15 17
|
3syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) |
20 |
|
df-ifp |
⊢ ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
21 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ℤ ) |
22 |
|
zcn |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) |
23 |
|
eqidd |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 − 1 ) = ( 𝑘 − 1 ) ) |
24 |
|
npcan1 |
⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
25 |
|
wkslem2 |
⊢ ( ( ( 𝑘 − 1 ) = ( 𝑘 − 1 ) ∧ ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( 𝑘 ∈ ℂ → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
27 |
21 22 26
|
3syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
28 |
|
df-ifp |
⊢ ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) ∨ ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
29 |
|
sneq |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
30 |
29
|
eqeq2d |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
31 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ V |
32 |
31
|
snid |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } |
33 |
1
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) |
34 |
33
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
35 |
|
eleq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
36 |
34 35
|
syl5bb |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
37 |
32 36
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
38 |
|
eleq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
39 |
32 38
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
40 |
1
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) |
41 |
39 40
|
eleqtrrdi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
42 |
37 41
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
43 |
42
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
44 |
30 43
|
syl6bi |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
45 |
44
|
imp |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
46 |
45
|
com12 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
48 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V |
49 |
31 48
|
prss |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
50 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
51 |
50
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) |
52 |
51
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
53 |
52
|
biimpi |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
55 |
49 54
|
sylbir |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
56 |
37 55
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
57 |
56
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
58 |
30 57
|
syl6bi |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
59 |
58
|
imp |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
60 |
59
|
com12 |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
62 |
47 61
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
63 |
62
|
com12 |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
64 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ V |
65 |
64 31
|
prss |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
66 |
50
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) |
67 |
66
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
68 |
67
|
biimpi |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
69 |
40
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
70 |
69 38
|
syl5bb |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
71 |
32 70
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
72 |
68 71
|
anim12i |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
73 |
72
|
ex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
75 |
65 74
|
sylbir |
⊢ ( { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
76 |
75
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
77 |
76
|
com12 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
78 |
77
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
79 |
67 52
|
anbi12i |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
80 |
79
|
biimpi |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
81 |
80
|
ex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
82 |
81
|
adantl |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
83 |
65 82
|
sylbir |
⊢ ( { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
84 |
83
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
85 |
84
|
com12 |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
86 |
85
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
87 |
49 86
|
sylbir |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
88 |
87
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
89 |
78 88
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
90 |
89
|
com12 |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
91 |
63 90
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) ∨ ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
92 |
28 91
|
sylbi |
⊢ ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
93 |
27 92
|
syl6bi |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
94 |
93
|
com3r |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
95 |
20 94
|
sylbi |
⊢ ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
96 |
95
|
com12 |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
98 |
13 19 97
|
mp2d |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
99 |
98
|
ancoms |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
100 |
|
inelcm |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) |
101 |
99 100
|
syl |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) |
102 |
|
hashge1 |
⊢ ( ( ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) → 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
103 |
7 101 102
|
sylancr |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
104 |
103
|
ralrimiva |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
105 |
104
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
106 |
5 105
|
syl6bi |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
107 |
2 106
|
mpcom |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |