Step |
Hyp |
Ref |
Expression |
1 |
|
wlk2v2e.i |
⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 |
2 |
|
wlk2v2e.f |
⊢ 𝐹 = 〈“ 0 0 ”〉 |
3 |
|
wlk2v2e.x |
⊢ 𝑋 ∈ V |
4 |
|
wlk2v2e.y |
⊢ 𝑌 ∈ V |
5 |
|
wlk2v2e.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 𝑋 ”〉 |
6 |
|
wlk2v2e.g |
⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 𝐼 〉 |
7 |
1
|
opeq2i |
⊢ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 = 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 |
8 |
6 7
|
eqtri |
⊢ 𝐺 = 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 |
9 |
|
uspgr2v1e2w |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 ∈ USPGraph ) |
10 |
3 4 9
|
mp2an |
⊢ 〈 { 𝑋 , 𝑌 } , 〈“ { 𝑋 , 𝑌 } ”〉 〉 ∈ USPGraph |
11 |
8 10
|
eqeltri |
⊢ 𝐺 ∈ USPGraph |
12 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
13 |
11 12
|
ax-mp |
⊢ 𝐺 ∈ UPGraph |
14 |
1 2
|
wlk2v2elem1 |
⊢ 𝐹 ∈ Word dom 𝐼 |
15 |
3
|
prid1 |
⊢ 𝑋 ∈ { 𝑋 , 𝑌 } |
16 |
4
|
prid2 |
⊢ 𝑌 ∈ { 𝑋 , 𝑌 } |
17 |
|
s3cl |
⊢ ( ( 𝑋 ∈ { 𝑋 , 𝑌 } ∧ 𝑌 ∈ { 𝑋 , 𝑌 } ∧ 𝑋 ∈ { 𝑋 , 𝑌 } ) → 〈“ 𝑋 𝑌 𝑋 ”〉 ∈ Word { 𝑋 , 𝑌 } ) |
18 |
15 16 15 17
|
mp3an |
⊢ 〈“ 𝑋 𝑌 𝑋 ”〉 ∈ Word { 𝑋 , 𝑌 } |
19 |
5 18
|
eqeltri |
⊢ 𝑃 ∈ Word { 𝑋 , 𝑌 } |
20 |
|
wrdf |
⊢ ( 𝑃 ∈ Word { 𝑋 , 𝑌 } → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } ) |
21 |
19 20
|
ax-mp |
⊢ 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } |
22 |
5
|
fveq2i |
⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝑋 𝑌 𝑋 ”〉 ) |
23 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝑋 𝑌 𝑋 ”〉 ) = 3 |
24 |
22 23
|
eqtr2i |
⊢ 3 = ( ♯ ‘ 𝑃 ) |
25 |
24
|
oveq2i |
⊢ ( 0 ..^ 3 ) = ( 0 ..^ ( ♯ ‘ 𝑃 ) ) |
26 |
25
|
feq2i |
⊢ ( 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } ↔ 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ { 𝑋 , 𝑌 } ) |
27 |
21 26
|
mpbir |
⊢ 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } |
28 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 0 0 ”〉 ) |
29 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 0 0 ”〉 ) = 2 |
30 |
28 29
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 2 |
31 |
30
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) |
32 |
|
3z |
⊢ 3 ∈ ℤ |
33 |
|
fzoval |
⊢ ( 3 ∈ ℤ → ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) ) |
34 |
32 33
|
ax-mp |
⊢ ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) |
35 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
36 |
35
|
oveq2i |
⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... 2 ) |
37 |
34 36
|
eqtr2i |
⊢ ( 0 ... 2 ) = ( 0 ..^ 3 ) |
38 |
31 37
|
eqtri |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 ) |
39 |
38
|
feq2i |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ↔ 𝑃 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 } ) |
40 |
27 39
|
mpbir |
⊢ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } |
41 |
1 2 3 4 5
|
wlk2v2elem2 |
⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } |
42 |
14 40 41
|
3pm3.2i |
⊢ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
43 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) |
44 |
|
prex |
⊢ { 𝑋 , 𝑌 } ∈ V |
45 |
|
s1cli |
⊢ 〈“ { 𝑋 , 𝑌 } ”〉 ∈ Word V |
46 |
1 45
|
eqeltri |
⊢ 𝐼 ∈ Word V |
47 |
|
opvtxfv |
⊢ ( ( { 𝑋 , 𝑌 } ∈ V ∧ 𝐼 ∈ Word V ) → ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = { 𝑋 , 𝑌 } ) |
48 |
44 46 47
|
mp2an |
⊢ ( Vtx ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = { 𝑋 , 𝑌 } |
49 |
43 48
|
eqtr2i |
⊢ { 𝑋 , 𝑌 } = ( Vtx ‘ 𝐺 ) |
50 |
6
|
fveq2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) |
51 |
|
opiedgfv |
⊢ ( ( { 𝑋 , 𝑌 } ∈ V ∧ 𝐼 ∈ Word V ) → ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = 𝐼 ) |
52 |
44 46 51
|
mp2an |
⊢ ( iEdg ‘ 〈 { 𝑋 , 𝑌 } , 𝐼 〉 ) = 𝐼 |
53 |
50 52
|
eqtr2i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
54 |
49 53
|
upgriswlk |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ { 𝑋 , 𝑌 } ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
55 |
42 54
|
mpbiri |
⊢ ( 𝐺 ∈ UPGraph → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
56 |
13 55
|
ax-mp |
⊢ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 |