Description: Restrictions of walks (i.e. special kinds of walks, for example paths - see pthsfval ) are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 30-Dec-2020) (Proof shortened by AV, 15-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wlkRes.1 | ⊢ ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | |
Assertion | wlkRes | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 ∧ 𝜑 ) } ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkRes.1 | ⊢ ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | |
2 | 1 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑝 ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
3 | wksv | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V | |
4 | opabbrex | ⊢ ( ( ∀ 𝑓 ∀ 𝑝 ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ∧ { 〈 𝑓 , 𝑝 〉 ∣ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 } ∈ V ) → { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 ∧ 𝜑 ) } ∈ V ) | |
5 | 2 3 4 | mp2an | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑊 ‘ 𝐺 ) 𝑝 ∧ 𝜑 ) } ∈ V |