Metamath Proof Explorer


Theorem wlkcomp

Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses wlkcomp.v 𝑉 = ( Vtx ‘ 𝐺 )
wlkcomp.i 𝐼 = ( iEdg ‘ 𝐺 )
wlkcomp.1 𝐹 = ( 1st𝑊 )
wlkcomp.2 𝑃 = ( 2nd𝑊 )
Assertion wlkcomp ( ( 𝐺𝑈𝑊 ∈ ( 𝑆 × 𝑇 ) ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wlkcomp.v 𝑉 = ( Vtx ‘ 𝐺 )
2 wlkcomp.i 𝐼 = ( iEdg ‘ 𝐺 )
3 wlkcomp.1 𝐹 = ( 1st𝑊 )
4 wlkcomp.2 𝑃 = ( 2nd𝑊 )
5 3 eqcomi ( 1st𝑊 ) = 𝐹
6 4 eqcomi ( 2nd𝑊 ) = 𝑃
7 5 6 pm3.2i ( ( 1st𝑊 ) = 𝐹 ∧ ( 2nd𝑊 ) = 𝑃 )
8 eqop ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 = ⟨ 𝐹 , 𝑃 ⟩ ↔ ( ( 1st𝑊 ) = 𝐹 ∧ ( 2nd𝑊 ) = 𝑃 ) ) )
9 7 8 mpbiri ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → 𝑊 = ⟨ 𝐹 , 𝑃 ⟩ )
10 9 eleq1d ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ⟨ 𝐹 , 𝑃 ⟩ ∈ ( Walks ‘ 𝐺 ) ) )
11 df-br ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ⟨ 𝐹 , 𝑃 ⟩ ∈ ( Walks ‘ 𝐺 ) )
12 10 11 bitr4di ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) )
13 1 2 iswlkg ( 𝐺𝑈 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )
14 12 13 sylan9bbr ( ( 𝐺𝑈𝑊 ∈ ( 𝑆 × 𝑇 ) ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )