Metamath Proof Explorer


Theorem wlkcompim

Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Hypotheses wlkcomp.v 𝑉 = ( Vtx ‘ 𝐺 )
wlkcomp.i 𝐼 = ( iEdg ‘ 𝐺 )
wlkcomp.1 𝐹 = ( 1st𝑊 )
wlkcomp.2 𝑃 = ( 2nd𝑊 )
Assertion wlkcompim ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wlkcomp.v 𝑉 = ( Vtx ‘ 𝐺 )
2 wlkcomp.i 𝐼 = ( iEdg ‘ 𝐺 )
3 wlkcomp.1 𝐹 = ( 1st𝑊 )
4 wlkcomp.2 𝑃 = ( 2nd𝑊 )
5 elfvex ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → 𝐺 ∈ V )
6 wlkcpr ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 1st𝑊 ) ( Walks ‘ 𝐺 ) ( 2nd𝑊 ) )
7 wlkvv ( ( 1st𝑊 ) ( Walks ‘ 𝐺 ) ( 2nd𝑊 ) → 𝑊 ∈ ( V × V ) )
8 6 7 sylbi ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → 𝑊 ∈ ( V × V ) )
9 1 2 3 4 wlkcomp ( ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )
10 9 biimpcd ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) → ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )
11 5 8 10 mp2and ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) )