Step |
Hyp |
Ref |
Expression |
1 |
|
wlkcomp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkcomp.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkcomp.1 |
⊢ 𝐹 = ( 1st ‘ 𝑊 ) |
4 |
|
wlkcomp.2 |
⊢ 𝑃 = ( 2nd ‘ 𝑊 ) |
5 |
|
elfvex |
⊢ ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → 𝐺 ∈ V ) |
6 |
|
wlkcpr |
⊢ ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 1st ‘ 𝑊 ) ( Walks ‘ 𝐺 ) ( 2nd ‘ 𝑊 ) ) |
7 |
|
wlkvv |
⊢ ( ( 1st ‘ 𝑊 ) ( Walks ‘ 𝐺 ) ( 2nd ‘ 𝑊 ) → 𝑊 ∈ ( V × V ) ) |
8 |
6 7
|
sylbi |
⊢ ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → 𝑊 ∈ ( V × V ) ) |
9 |
1 2 3 4
|
wlkcomp |
⊢ ( ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) → ( 𝑊 ∈ ( Walks ‘ 𝐺 ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
10 |
9
|
biimpcd |
⊢ ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
11 |
5 8 10
|
mp2and |
⊢ ( 𝑊 ∈ ( Walks ‘ 𝐺 ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |