Step |
Hyp |
Ref |
Expression |
1 |
|
wlkd.p |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
2 |
|
wlkd.f |
⊢ ( 𝜑 → 𝐹 ∈ Word V ) |
3 |
|
wlkd.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
4 |
|
wlkdlem1.v |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
5 |
|
wrdf |
⊢ ( 𝑃 ∈ Word V → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ) |
7 |
3
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
8 |
|
lencl |
⊢ ( 𝐹 ∈ Word V → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
10 |
9
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
11 |
|
fzval3 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
13 |
7 12
|
eqtr4d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
14 |
13
|
feq2d |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ) ) |
15 |
|
ssv |
⊢ 𝑉 ⊆ V |
16 |
|
frnssb |
⊢ ( ( 𝑉 ⊆ V ∧ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
17 |
15 4 16
|
sylancr |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
18 |
14 17
|
bitrd |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
19 |
6 18
|
mpbid |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |