Metamath Proof Explorer


Theorem wlkdlem1

Description: Lemma 1 for wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p ( 𝜑𝑃 ∈ Word V )
wlkd.f ( 𝜑𝐹 ∈ Word V )
wlkd.l ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
wlkdlem1.v ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ∈ 𝑉 )
Assertion wlkdlem1 ( 𝜑𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )

Proof

Step Hyp Ref Expression
1 wlkd.p ( 𝜑𝑃 ∈ Word V )
2 wlkd.f ( 𝜑𝐹 ∈ Word V )
3 wlkd.l ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
4 wlkdlem1.v ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ∈ 𝑉 )
5 wrdf ( 𝑃 ∈ Word V → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V )
6 1 5 syl ( 𝜑𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V )
7 3 oveq2d ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
8 lencl ( 𝐹 ∈ Word V → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
9 2 8 syl ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
10 9 nn0zd ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℤ )
11 fzval3 ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
12 10 11 syl ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) )
13 7 12 eqtr4d ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) )
14 13 feq2d ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ) )
15 ssv 𝑉 ⊆ V
16 frnssb ( ( 𝑉 ⊆ V ∧ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ∈ 𝑉 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) )
17 15 4 16 sylancr ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) )
18 14 17 bitrd ( 𝜑 → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ V ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) )
19 6 18 mpbid ( 𝜑𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )