Step |
Hyp |
Ref |
Expression |
1 |
|
wlkd.p |
⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
2 |
|
wlkd.f |
⊢ ( 𝜑 → 𝐹 ∈ Word V ) |
3 |
|
wlkd.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
4 |
|
wlkd.e |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
5 |
1 2 3 4
|
wlkdlem2 |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
6 |
|
elfvdm |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
8 |
5 7
|
simpl2im |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
9 |
|
iswrdsymb |
⊢ ( ( 𝐹 ∈ Word V ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) → 𝐹 ∈ Word dom 𝐼 ) |
10 |
2 8 9
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |