| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkd.p | ⊢ ( 𝜑  →  𝑃  ∈  Word  V ) | 
						
							| 2 |  | wlkd.f | ⊢ ( 𝜑  →  𝐹  ∈  Word  V ) | 
						
							| 3 |  | wlkd.l | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 4 |  | wlkd.e | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 5 |  | wlkd.n | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 6 |  | r19.26 | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  ↔  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 7 |  | df-ne | ⊢ ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  ↔  ¬  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 8 |  | ifpfal | ⊢ ( ¬  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) )  →  ( if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) )  ↔  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 9 | 7 8 | sylbi | ⊢ ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) )  →  ( if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) )  ↔  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 10 | 9 | biimparc | ⊢ ( ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  →  if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 11 | 10 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 12 | 6 11 | sylbir | ⊢ ( ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ ( 𝑘  +  1 ) ) )  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |