Metamath Proof Explorer


Theorem wlkdlem4

Description: Lemma 4 for wlkd . (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 23-Jan-2021)

Ref Expression
Hypotheses wlkd.p ( 𝜑𝑃 ∈ Word V )
wlkd.f ( 𝜑𝐹 ∈ Word V )
wlkd.l ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
wlkd.e ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) )
wlkd.n ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) )
Assertion wlkdlem4 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 wlkd.p ( 𝜑𝑃 ∈ Word V )
2 wlkd.f ( 𝜑𝐹 ∈ Word V )
3 wlkd.l ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) )
4 wlkd.e ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) )
5 wlkd.n ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) )
6 r19.26 ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ∧ ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) )
7 df-ne ( ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ¬ ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) )
8 ifpfal ( ¬ ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ↔ { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
9 7 8 sylbi ( ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) → ( if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ↔ { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
10 9 biimparc ( ( { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ∧ ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
11 10 ralimi ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ∧ ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
12 6 11 sylbir ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
13 4 5 12 syl2anc ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )