| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkcomp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wlkcomp.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | wlkcomp.1 | ⊢ 𝐹  =  ( 1st  ‘ 𝑊 ) | 
						
							| 4 |  | wlkcomp.2 | ⊢ 𝑃  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 5 | 1 2 3 4 | wlkcompim | ⊢ ( 𝑊  ∈  ( Walks ‘ 𝐺 )  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 6 |  | 3simpa | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) )  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑊  ∈  ( Walks ‘ 𝐺 )  →  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |