Step |
Hyp |
Ref |
Expression |
1 |
|
wlkpvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
3 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
4 |
|
0elfz |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
ffvelrn |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
7 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
8 |
|
ffvelrn |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) |
9 |
7 8
|
sylan2b |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) |
10 |
6 9
|
jca |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |
11 |
2 3 10
|
syl2anc |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |