| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkpvtx.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) | 
						
							| 3 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 4 |  | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 |  | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  0  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 7 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝐹 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝐹 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  𝑉 ) | 
						
							| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  𝑉 ) | 
						
							| 10 | 6 9 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  𝑉 ) ) | 
						
							| 11 | 2 3 10 | syl2anc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( 𝑃 ‘ 0 )  ∈  𝑉  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ∈  𝑉 ) ) |