Description: A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkiswwlks | ⊢ ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 ∈ ( WWalks ‘ 𝐺 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
2 | wlkiswwlks1 | ⊢ ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ ( WWalks ‘ 𝐺 ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ ( WWalks ‘ 𝐺 ) ) ) |
4 | 3 | exlimdv | ⊢ ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ∈ ( WWalks ‘ 𝐺 ) ) ) |
5 | wlkiswwlks2 | ⊢ ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | |
6 | 4 5 | impbid | ⊢ ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 ∈ ( WWalks ‘ 𝐺 ) ) ) |