Step |
Hyp |
Ref |
Expression |
1 |
|
wlkiswwlks2lem.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
2 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
3 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ) |
4 |
3
|
biimpri |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
5 |
2 4
|
sylan |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
6 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
8 |
|
fvex |
⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ∈ V |
9 |
8 1
|
fnmpti |
⊢ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
10 |
|
ffzo0hash |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ∧ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
11 |
7 9 10
|
sylancl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |