| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 3 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ ( 𝑥  +  1 ) )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 4 | 2 3 | preq12d | ⊢ ( 𝑥  =  𝐼  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑥  =  𝐼  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 7 |  | fvexd | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  ∈  V ) | 
						
							| 8 | 1 5 6 7 | fvmptd3 | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) |