Step |
Hyp |
Ref |
Expression |
1 |
|
wlkiswwlks2lem.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
2 |
1
|
wlkiswwlks2lem1 |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
3 |
|
wrdf |
⊢ ( 𝑃 ∈ Word 𝑉 → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉 ) |
4 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
5 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
6 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
8 |
|
oveq2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ♯ ‘ 𝐹 ) → ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
9 |
8
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
10 |
7 9
|
sylan9eq |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
11 |
10
|
feq2d |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
12 |
11
|
biimpcd |
⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉 → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
13 |
12
|
expd |
⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ) |
14 |
3 4 13
|
sylc |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
16 |
2 15
|
mpd |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |