Step |
Hyp |
Ref |
Expression |
1 |
|
wlkiswwlks2lem.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
2 |
|
wlkiswwlks2lem.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1
|
wlkiswwlks2lem1 |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
5 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
7 |
1
|
wlkiswwlks2lem2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
8 |
6 7
|
sylan |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ∧ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐹 ‘ 𝑖 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
10 |
9
|
fveq2d |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ∧ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
11 |
2
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
12 |
2
|
rneqi |
⊢ ran 𝐸 = ran ( iEdg ‘ 𝐺 ) |
13 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
14 |
12 13
|
eqtr4i |
⊢ ran 𝐸 = ( Edg ‘ 𝐺 ) |
15 |
|
f1oeq3 |
⊢ ( ran 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
17 |
11 16
|
sylibr |
⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
20 |
|
f1ocnvfv2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ∧ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
21 |
19 20
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ∧ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
22 |
10 21
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ∧ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
23 |
22
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
24 |
23
|
ralimdva |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
25 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
26 |
25
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
27 |
26
|
imbi2d |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
28 |
24 27
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) → ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
29 |
4 28
|
mpcom |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |