| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
iswwlks |
⊢ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 4 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 5 |
4
|
eleq2i |
⊢ ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 6 |
|
upgruhgr |
⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) |
| 7 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 8 |
7
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝐺 ∈ UPGraph ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 11 |
|
elrnrexdm |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 12 |
|
eqcom |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 13 |
12
|
rexbii |
⊢ ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 14 |
11 13
|
imbitrrdi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 15 |
10 14
|
syl |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝐺 ∈ UPGraph ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 16 |
5 15
|
biimtrid |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝐺 ∈ UPGraph ) → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 17 |
16
|
ralimdv |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝐺 ∈ UPGraph ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ∈ UPGraph → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 19 |
18
|
com23 |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ UPGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 20 |
19
|
3impia |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐺 ∈ UPGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 21 |
20
|
impcom |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 22 |
|
ovex |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∈ V |
| 23 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 24 |
23
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 25 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑖 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 26 |
22 24 25
|
ac6 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 27 |
21 26
|
syl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 28 |
|
iswrdi |
⊢ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 31 |
|
len0nnbi |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑃 ≠ ∅ ↔ ( ♯ ‘ 𝑃 ) ∈ ℕ ) ) |
| 32 |
31
|
biimpac |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
| 33 |
|
wrdf |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 34 |
|
nnz |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
| 35 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 38 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
| 39 |
|
fnfzo0hash |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 40 |
38 39
|
sylan |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 41 |
40
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ♯ ‘ 𝑓 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 0 ... ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 0 ... ( ♯ ‘ 𝑓 ) ) ) |
| 43 |
37 42
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ... ( ♯ ‘ 𝑓 ) ) ) |
| 44 |
43
|
feq2d |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 45 |
44
|
biimpcd |
⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 46 |
45
|
expd |
⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 47 |
33 46
|
syl |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 49 |
32 48
|
mpd |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 50 |
49
|
3adant3 |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 52 |
51
|
com12 |
⊢ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 54 |
53
|
impcom |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 55 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 56 |
32 40
|
sylan |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 58 |
57
|
ex |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 59 |
58
|
3adant3 |
⊢ ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
| 61 |
60
|
imp |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 63 |
55 62
|
raleqtrrdv |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 64 |
63
|
anasss |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 65 |
30 54 64
|
3jca |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) → ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 66 |
65
|
ex |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 67 |
66
|
eximdv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ∃ 𝑓 ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 68 |
27 67
|
mpd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑓 ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 69 |
1 7
|
upgriswlk |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 71 |
70
|
exbidv |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ↔ ∃ 𝑓 ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 72 |
68 71
|
mpbird |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 73 |
72
|
ex |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑃 ≠ ∅ ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
| 74 |
3 73
|
biimtrid |
⊢ ( 𝐺 ∈ UPGraph → ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |