Metamath Proof Explorer


Theorem wlkl0

Description: There is exactly one walk of length 0 on each vertex X . (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypothesis clwlknon2num.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion wlkl0 ( 𝑋𝑉 → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) } = { ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ } )

Proof

Step Hyp Ref Expression
1 clwlknon2num.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clwlkwlk ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 ∈ ( Walks ‘ 𝐺 ) )
3 wlkop ( 𝑤 ∈ ( Walks ‘ 𝐺 ) → 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
4 2 3 syl ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ )
5 fvex ( 1st𝑤 ) ∈ V
6 hasheq0 ( ( 1st𝑤 ) ∈ V → ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ↔ ( 1st𝑤 ) = ∅ ) )
7 5 6 ax-mp ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ↔ ( 1st𝑤 ) = ∅ )
8 7 biimpi ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 → ( 1st𝑤 ) = ∅ )
9 8 adantr ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ( 1st𝑤 ) = ∅ )
10 9 3ad2ant3 ( ( 𝑋𝑉 ∧ ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 1st𝑤 ) = ∅ )
11 9 adantl ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 1st𝑤 ) = ∅ )
12 11 breq1d ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ∅ ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ) )
13 1 1vgrex ( 𝑋𝑉𝐺 ∈ V )
14 1 0clwlk ( 𝐺 ∈ V → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) )
15 13 14 syl ( 𝑋𝑉 → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) )
16 15 adantr ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) )
17 12 16 bitrd ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) )
18 fz0sn ( 0 ... 0 ) = { 0 }
19 18 feq2i ( ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( 2nd𝑤 ) : { 0 } ⟶ 𝑉 )
20 c0ex 0 ∈ V
21 20 fsn2 ( ( 2nd𝑤 ) : { 0 } ⟶ 𝑉 ↔ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) )
22 simprr ( ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) ) → ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } )
23 simprr ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 )
24 23 adantr ( ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) ) → ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 )
25 24 opeq2d ( ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) ) → ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ = ⟨ 0 , 𝑋 ⟩ )
26 25 sneqd ( ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) ) → { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } = { ⟨ 0 , 𝑋 ⟩ } )
27 22 26 eqtrd ( ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } )
28 27 ex ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( ( ( 2nd𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd𝑤 ) = { ⟨ 0 , ( ( 2nd𝑤 ) ‘ 0 ) ⟩ } ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) )
29 21 28 syl5bi ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd𝑤 ) : { 0 } ⟶ 𝑉 → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) )
30 19 29 syl5bi ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) )
31 17 30 sylbid ( ( 𝑋𝑉 ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) )
32 31 ex ( 𝑋𝑉 → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) ) )
33 32 com23 ( 𝑋𝑉 → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } ) ) )
34 33 3imp ( ( 𝑋𝑉 ∧ ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } )
35 10 34 opeq12d ( ( 𝑋𝑉 ∧ ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ )
36 35 3exp ( 𝑋𝑉 → ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) )
37 eleq1 ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ∈ ( ClWalks ‘ 𝐺 ) ) )
38 df-br ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ↔ ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ ∈ ( ClWalks ‘ 𝐺 ) )
39 37 38 bitr4di ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) ) )
40 eqeq1 ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ↔ ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) )
41 40 imbi2d ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ↔ ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) )
42 39 41 imbi12d ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) ↔ ( ( 1st𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd𝑤 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) ) )
43 36 42 syl5ibr ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( 𝑋𝑉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) ) )
44 43 com23 ( 𝑤 = ⟨ ( 1st𝑤 ) , ( 2nd𝑤 ) ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝑋𝑉 → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) ) )
45 4 44 mpcom ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝑋𝑉 → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) )
46 45 com12 ( 𝑋𝑉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) ) )
47 46 impd ( 𝑋𝑉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) → 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) )
48 eqidd ( 𝑋𝑉 → ∅ = ∅ )
49 20 a1i ( 𝑋𝑉 → 0 ∈ V )
50 snidg ( 𝑋𝑉𝑋 ∈ { 𝑋 } )
51 49 50 fsnd ( 𝑋𝑉 → { ⟨ 0 , 𝑋 ⟩ } : { 0 } ⟶ { 𝑋 } )
52 1 0clwlkv ( ( 𝑋𝑉 ∧ ∅ = ∅ ∧ { ⟨ 0 , 𝑋 ⟩ } : { 0 } ⟶ { 𝑋 } ) → ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } )
53 48 51 52 mpd3an23 ( 𝑋𝑉 → ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } )
54 hash0 ( ♯ ‘ ∅ ) = 0
55 54 a1i ( 𝑋𝑉 → ( ♯ ‘ ∅ ) = 0 )
56 fvsng ( ( 0 ∈ V ∧ 𝑋𝑉 ) → ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 )
57 20 56 mpan ( 𝑋𝑉 → ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 )
58 53 55 57 jca32 ( 𝑋𝑉 → ( ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } ∧ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 ) ) )
59 eleq1 ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ∈ ( ClWalks ‘ 𝐺 ) ) )
60 df-br ( ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } ↔ ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ∈ ( ClWalks ‘ 𝐺 ) )
61 59 60 bitr4di ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } ) )
62 0ex ∅ ∈ V
63 snex { ⟨ 0 , 𝑋 ⟩ } ∈ V
64 62 63 op1std ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( 1st𝑤 ) = ∅ )
65 64 fveqeq2d ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ↔ ( ♯ ‘ ∅ ) = 0 ) )
66 62 63 op2ndd ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( 2nd𝑤 ) = { ⟨ 0 , 𝑋 ⟩ } )
67 66 fveq1d ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( ( 2nd𝑤 ) ‘ 0 ) = ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) )
68 67 eqeq1d ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ↔ ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 ) )
69 65 68 anbi12d ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ↔ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 ) ) )
70 61 69 anbi12d ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ ( ∅ ( ClWalks ‘ 𝐺 ) { ⟨ 0 , 𝑋 ⟩ } ∧ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { ⟨ 0 , 𝑋 ⟩ } ‘ 0 ) = 𝑋 ) ) ) )
71 58 70 syl5ibrcom ( 𝑋𝑉 → ( 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ) )
72 47 71 impbid ( 𝑋𝑉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) )
73 72 alrimiv ( 𝑋𝑉 → ∀ 𝑤 ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) )
74 rabeqsn ( { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) } = { ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ } ↔ ∀ 𝑤 ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ ) )
75 73 74 sylibr ( 𝑋𝑉 → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st𝑤 ) ) = 0 ∧ ( ( 2nd𝑤 ) ‘ 0 ) = 𝑋 ) } = { ⟨ ∅ , { ⟨ 0 , 𝑋 ⟩ } ⟩ } )