| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-br | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ↔  〈 𝐹 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( Walks ‘ 𝐺 ) ) | 
						
							| 2 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 3 |  | wlklenvp1 | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 4 | 2 3 | jca | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 5 | 1 4 | sylbir | ⊢ ( 〈 𝐹 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( Walks ‘ 𝐺 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 6 |  | ccatws1len | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  ↔  ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 8 |  | eqcom | ⊢ ( ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  ↔  ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 9 | 7 8 | bitrdi | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  ↔  ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  ↔  ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 11 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 13 |  | lencl | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0cnd | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 16 |  | 1cnd | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 17 | 12 15 16 | addcan2d | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( ( ♯ ‘ 𝑊 )  +  1 )  ↔  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 18 | 17 | biimpd | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( ( ♯ ‘ 𝑊 )  +  1 )  →  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 19 | 10 18 | sylbid | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 19 | expimpd | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 5 20 | syl5 | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 〈 𝐹 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( Walks ‘ 𝐺 )  →  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 𝑊 ) ) ) |