Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ↔ 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) ) |
2 |
|
wlklenvp1 |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
3 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
4 |
|
wrdsymb1 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
5 |
4
|
s1cld |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → 〈“ ( 𝑊 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
6 |
|
ccatlenOLD |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ ( 𝑊 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) ) |
7 |
5 6
|
syldan |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) ) |
8 |
|
s1len |
⊢ ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) = 1 |
9 |
8
|
a1i |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) = 1 ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) + ( ♯ ‘ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
13 |
|
lencl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
14 |
|
eqcom |
⊢ ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
15 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
16 |
15
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
17 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
19 |
|
1cnd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → 1 ∈ ℂ ) |
20 |
16 18 19
|
addcan2d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ↔ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
21 |
20
|
biimpd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝐹 ) + 1 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
22 |
14 21
|
syl5bi |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
23 |
22
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
23
|
com23 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
25 |
13 24
|
syl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
27 |
12 26
|
sylbid |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
28 |
27
|
com3l |
⊢ ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) ) |
29 |
2 3 28
|
sylc |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
30 |
1 29
|
sylbir |
⊢ ( 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |
31 |
30
|
com12 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 〈 𝐹 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( Walks ‘ 𝐺 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝑊 ) ) ) |