Metamath Proof Explorer


Theorem wlklnwwlkln2

Description: A walk of length N as word corresponds to the sequence of vertices in a walk of length N in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 12-Apr-2021)

Ref Expression
Assertion wlklnwwlkln2 ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 wlkiswwlks2 ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) )
2 1 wlklnwwlkln2lem ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) )