Step |
Hyp |
Ref |
Expression |
1 |
|
wlklnwwlkln2lem.1 |
⊢ ( 𝜑 → ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
wwlknbp |
⊢ ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
4 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ) |
6 |
|
lencl |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
9 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → 1 ∈ ℂ ) |
10 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → 𝑁 ∈ ℂ ) |
12 |
8 9 11
|
subadd2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 ↔ ( 𝑁 + 1 ) = ( ♯ ‘ 𝑃 ) ) ) |
13 |
|
eqcom |
⊢ ( ( 𝑁 + 1 ) = ( ♯ ‘ 𝑃 ) ↔ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) |
14 |
12 13
|
bitr2di |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ↔ ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 ) ) |
15 |
14
|
biimpcd |
⊢ ( ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 ) ) |
17 |
16
|
impcom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 ) |
18 |
1
|
com12 |
⊢ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ( 𝜑 → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) → ( 𝜑 → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) → ( 𝜑 → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |
21 |
20
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) |
22 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) → 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) |
23 |
|
wlklenvm1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
24 |
22 23
|
jccir |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
25 |
24
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
26 |
25
|
eximdv |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) ) |
27 |
21 26
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
28 |
|
eqeq2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ↔ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) |
29 |
28
|
anbi2d |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
30 |
29
|
exbidv |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
31 |
27 30
|
syl5ib |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 → ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) ∧ 𝜑 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
32 |
31
|
expd |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) = 𝑁 → ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ) |
33 |
17 32
|
mpcom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
34 |
33
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑃 ) = ( 𝑁 + 1 ) ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ) |
35 |
5 34
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ) |
36 |
35
|
3adant1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) ) |
37 |
3 36
|
mpcom |
⊢ ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝜑 → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
38 |
37
|
com12 |
⊢ ( 𝜑 → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |